Radius-invariant graphs

Vojtech Bálint; Ondrej Vacek

Mathematica Bohemica (2004)

  • Volume: 129, Issue: 4, page 361-377
  • ISSN: 0862-7959

Abstract

top
The eccentricity e ( v ) of a vertex v is defined as the distance to a farthest vertex from v . The radius of a graph G is defined as a r ( G ) = min u V ( G ) { e ( u ) } . A graph G is radius-edge-invariant if r ( G - e ) = r ( G ) for every e E ( G ) , radius-vertex-invariant if r ( G - v ) = r ( G ) for every v V ( G ) and radius-adding-invariant if r ( G + e ) = r ( G ) for every e E ( G ¯ ) . Such classes of graphs are studied in this paper.

How to cite

top

Bálint, Vojtech, and Vacek, Ondrej. "Radius-invariant graphs." Mathematica Bohemica 129.4 (2004): 361-377. <http://eudml.org/doc/249405>.

@article{Bálint2004,
abstract = {The eccentricity $e(v)$ of a vertex $v$ is defined as the distance to a farthest vertex from $v$. The radius of a graph $G$ is defined as a $r(G)=\min _\{u \in V(G)\}\lbrace e(u)\rbrace $. A graph $G$ is radius-edge-invariant if $r(G-e)=r(G)$ for every $e \in E(G)$, radius-vertex-invariant if $r(G-v)= r(G)$ for every $v \in V(G)$ and radius-adding-invariant if $r(G+e)=r(G)$ for every $e \in E(\overline\{G\})$. Such classes of graphs are studied in this paper.},
author = {Bálint, Vojtech, Vacek, Ondrej},
journal = {Mathematica Bohemica},
keywords = {radius of graph; radius-invariant graphs; radius of graph},
language = {eng},
number = {4},
pages = {361-377},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Radius-invariant graphs},
url = {http://eudml.org/doc/249405},
volume = {129},
year = {2004},
}

TY - JOUR
AU - Bálint, Vojtech
AU - Vacek, Ondrej
TI - Radius-invariant graphs
JO - Mathematica Bohemica
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 129
IS - 4
SP - 361
EP - 377
AB - The eccentricity $e(v)$ of a vertex $v$ is defined as the distance to a farthest vertex from $v$. The radius of a graph $G$ is defined as a $r(G)=\min _{u \in V(G)}\lbrace e(u)\rbrace $. A graph $G$ is radius-edge-invariant if $r(G-e)=r(G)$ for every $e \in E(G)$, radius-vertex-invariant if $r(G-v)= r(G)$ for every $v \in V(G)$ and radius-adding-invariant if $r(G+e)=r(G)$ for every $e \in E(\overline{G})$. Such classes of graphs are studied in this paper.
LA - eng
KW - radius of graph; radius-invariant graphs; radius of graph
UR - http://eudml.org/doc/249405
ER -

References

top
  1. Distance in Graphs, Addison-Wesley, Redwood City, 1990. (1990) 
  2. 10.1016/S0012-365X(03)00189-4, Discrete Math. 272 (2003), 119–126. (2003) MR2019205DOI10.1016/S0012-365X(03)00189-4
  3. 10.1016/0895-7177(93)90250-3, Math. Comput. Modelling 17 (1990), 35–41. (1990) MR1236507DOI10.1016/0895-7177(93)90250-3
  4. Changing and unchanging of the radius of graph, Linear Algebra Appl. 217 (1995), 67–82. (1995) MR1322543
  5. 10.1007/BF01844162, Aequationes Math. 4 (1970), 322–325. (1970) MR0281659DOI10.1007/BF01844162
  6. On radially extremal graphs and digraphs, a survey, Math. Bohem. 125 (2000), 215–225. (2000) Zbl0963.05072MR1768809
  7. 10.1016/0166-218X(92)90137-Y, Discrete Appl. Math. 37/38 (1992), 265–274. (1992) MR1176857DOI10.1016/0166-218X(92)90137-Y
  8. Changing and unchanging invariants for graphs, Bull. Malaysian Math. Soc. 5 (1982), 73–78. (1982) Zbl0512.05035MR0700121
  9. The number of edges in a graph of given radius, Dokl. Akad. Nauk 173 (1967), 1245–1246. (Russian) (1967) Zbl0158.42504MR0210622

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.