Radius-invariant graphs
Mathematica Bohemica (2004)
- Volume: 129, Issue: 4, page 361-377
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBálint, Vojtech, and Vacek, Ondrej. "Radius-invariant graphs." Mathematica Bohemica 129.4 (2004): 361-377. <http://eudml.org/doc/249405>.
@article{Bálint2004,
abstract = {The eccentricity $e(v)$ of a vertex $v$ is defined as the distance to a farthest vertex from $v$. The radius of a graph $G$ is defined as a $r(G)=\min _\{u \in V(G)\}\lbrace e(u)\rbrace $. A graph $G$ is radius-edge-invariant if $r(G-e)=r(G)$ for every $e \in E(G)$, radius-vertex-invariant if $r(G-v)= r(G)$ for every $v \in V(G)$ and radius-adding-invariant if $r(G+e)=r(G)$ for every $e \in E(\overline\{G\})$. Such classes of graphs are studied in this paper.},
author = {Bálint, Vojtech, Vacek, Ondrej},
journal = {Mathematica Bohemica},
keywords = {radius of graph; radius-invariant graphs; radius of graph},
language = {eng},
number = {4},
pages = {361-377},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Radius-invariant graphs},
url = {http://eudml.org/doc/249405},
volume = {129},
year = {2004},
}
TY - JOUR
AU - Bálint, Vojtech
AU - Vacek, Ondrej
TI - Radius-invariant graphs
JO - Mathematica Bohemica
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 129
IS - 4
SP - 361
EP - 377
AB - The eccentricity $e(v)$ of a vertex $v$ is defined as the distance to a farthest vertex from $v$. The radius of a graph $G$ is defined as a $r(G)=\min _{u \in V(G)}\lbrace e(u)\rbrace $. A graph $G$ is radius-edge-invariant if $r(G-e)=r(G)$ for every $e \in E(G)$, radius-vertex-invariant if $r(G-v)= r(G)$ for every $v \in V(G)$ and radius-adding-invariant if $r(G+e)=r(G)$ for every $e \in E(\overline{G})$. Such classes of graphs are studied in this paper.
LA - eng
KW - radius of graph; radius-invariant graphs; radius of graph
UR - http://eudml.org/doc/249405
ER -
References
top- Distance in Graphs, Addison-Wesley, Redwood City, 1990. (1990)
- 10.1016/S0012-365X(03)00189-4, Discrete Math. 272 (2003), 119–126. (2003) MR2019205DOI10.1016/S0012-365X(03)00189-4
- 10.1016/0895-7177(93)90250-3, Math. Comput. Modelling 17 (1990), 35–41. (1990) MR1236507DOI10.1016/0895-7177(93)90250-3
- Changing and unchanging of the radius of graph, Linear Algebra Appl. 217 (1995), 67–82. (1995) MR1322543
- 10.1007/BF01844162, Aequationes Math. 4 (1970), 322–325. (1970) MR0281659DOI10.1007/BF01844162
- On radially extremal graphs and digraphs, a survey, Math. Bohem. 125 (2000), 215–225. (2000) Zbl0963.05072MR1768809
- 10.1016/0166-218X(92)90137-Y, Discrete Appl. Math. 37/38 (1992), 265–274. (1992) MR1176857DOI10.1016/0166-218X(92)90137-Y
- Changing and unchanging invariants for graphs, Bull. Malaysian Math. Soc. 5 (1982), 73–78. (1982) Zbl0512.05035MR0700121
- The number of edges in a graph of given radius, Dokl. Akad. Nauk 173 (1967), 1245–1246. (Russian) (1967) Zbl0158.42504MR0210622
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.