On cyclically embeddable (n,n)-graphs
Agnieszka Görlich; Monika Pilśniak; Mariusz Woźniak
Discussiones Mathematicae Graph Theory (2003)
- Volume: 23, Issue: 1, page 85-104
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topAgnieszka Görlich, Monika Pilśniak, and Mariusz Woźniak. "On cyclically embeddable (n,n)-graphs." Discussiones Mathematicae Graph Theory 23.1 (2003): 85-104. <http://eudml.org/doc/270699>.
@article{AgnieszkaGörlich2003,
abstract = {An embedding of a simple graph G into its complement G̅ is a permutation σ on V(G) such that if an edge xy belongs to E(G), then σ(x)σ(y) does not belong to E(G). In this note we consider the embeddable (n,n)-graphs. We prove that with few exceptions the corresponding permutation may be chosen as cyclic one.},
author = {Agnieszka Görlich, Monika Pilśniak, Mariusz Woźniak},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {packing of graphs; cyclic permutation; packing},
language = {eng},
number = {1},
pages = {85-104},
title = {On cyclically embeddable (n,n)-graphs},
url = {http://eudml.org/doc/270699},
volume = {23},
year = {2003},
}
TY - JOUR
AU - Agnieszka Görlich
AU - Monika Pilśniak
AU - Mariusz Woźniak
TI - On cyclically embeddable (n,n)-graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2003
VL - 23
IS - 1
SP - 85
EP - 104
AB - An embedding of a simple graph G into its complement G̅ is a permutation σ on V(G) such that if an edge xy belongs to E(G), then σ(x)σ(y) does not belong to E(G). In this note we consider the embeddable (n,n)-graphs. We prove that with few exceptions the corresponding permutation may be chosen as cyclic one.
LA - eng
KW - packing of graphs; cyclic permutation; packing
UR - http://eudml.org/doc/270699
ER -
References
top- [1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
- [2] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory 25 (B) (1978) 105-124. Zbl0387.05020
- [3] D. Burns and S. Schuster, Every (p,p-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308. Zbl0375.05046
- [4] D. Burns and S. Schuster, Embedding (n,n-1) graphs in their complements, Israel J. Math. 30 (1978) 313-320, doi: 10.1007/BF02761996. Zbl0379.05023
- [5] R.J. Faudree, C.C. Rousseau, R.H. Schelp and S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31:106 (1981) 53-62. Zbl0479.05028
- [6] T. Gangopadhyay, Packing graphs in their complements, Discrete Math. 186 (1998) 117-124, doi: 10.1016/S0012-365X(97)00186-6. Zbl0958.05111
- [7] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combin. 4 (1977) 133-142. Zbl0418.05003
- [8] S. Schuster, Fixed-point-free embeddings of graphs in their complements, Internat. J. Math. & Math. Sci. 1 (1978) 335-338, doi: 10.1155/S0161171278000356. Zbl0391.05047
- [9] M. Woźniak, Packing of Graphs, Dissertationes Math. 362 (1997) pp.78.
- [10] M. Woźniak, On cyclically embeddable graphs, Discuss. Math. Graph Theory 19 (1999) 241-248, doi: 10.7151/dmgt.1099. Zbl0958.05041
- [11] M. Woźniak, On cyclically embeddable (n,n-1)-graphs, Discrete Math. 251 (2002) 173-179. Zbl1001.05101
- [12] H.P. Yap, Some Topics In Graph Theory, London Mathematical Society, Lectures Notes Series 108 (Cambridge University Press, Cambridge, 1986). Zbl0588.05002
- [13] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404. Zbl0685.05036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.