The intersection convolution of relations and the Hahn-Banach type theorems
Annales Polonici Mathematici (1998)
- Volume: 69, Issue: 3, page 235-249
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topÁrpád Száz. "The intersection convolution of relations and the Hahn-Banach type theorems." Annales Polonici Mathematici 69.3 (1998): 235-249. <http://eudml.org/doc/270701>.
@article{ÁrpádSzáz1998,
abstract = {By introducing the intersection convolution of relations, we prove a natural generalization of an extension theorem of B. Rodrí guez-Salinas and L. Bou on linear selections which is already a substantial generalization of the classical Hahn-Banach theorems. In particular, we give a simple neccesary and sufficient condition in terms of the intersection convolution of a homogeneous relation and its partial linear selections in order that every partial linear selection of this relation can have an extension to a total linear selection.},
author = {Árpád Száz},
journal = {Annales Polonici Mathematici},
keywords = {intersection convolution; additive and homogeneous relations; linear selections; binary intersection property; Hahn-Banach theorems; Hahn-Banach extension theorem; injectivity of Banach spaces; Hausdorff's maximality principle; Nachbin's Theorem},
language = {eng},
number = {3},
pages = {235-249},
title = {The intersection convolution of relations and the Hahn-Banach type theorems},
url = {http://eudml.org/doc/270701},
volume = {69},
year = {1998},
}
TY - JOUR
AU - Árpád Száz
TI - The intersection convolution of relations and the Hahn-Banach type theorems
JO - Annales Polonici Mathematici
PY - 1998
VL - 69
IS - 3
SP - 235
EP - 249
AB - By introducing the intersection convolution of relations, we prove a natural generalization of an extension theorem of B. Rodrí guez-Salinas and L. Bou on linear selections which is already a substantial generalization of the classical Hahn-Banach theorems. In particular, we give a simple neccesary and sufficient condition in terms of the intersection convolution of a homogeneous relation and its partial linear selections in order that every partial linear selection of this relation can have an extension to a total linear selection.
LA - eng
KW - intersection convolution; additive and homogeneous relations; linear selections; binary intersection property; Hahn-Banach theorems; Hahn-Banach extension theorem; injectivity of Banach spaces; Hausdorff's maximality principle; Nachbin's Theorem
UR - http://eudml.org/doc/270701
ER -
References
top- [1] J. Abreu and A. Etchebery, Hahn-Banach and Banach-Steinhaus theorems for convex processes, Period. Math. Hungar. 20 (1989), 289-297. Zbl0664.46012
- [2] R. Arens, Operational calculus of linear relations, Pacific J. Math. 11 (1961), 9-23. Zbl0102.10201
- [3] G. Buskes, The Hahn-Banach Theorem surveyed, Dissertationes Math. 327 (1993). Zbl0808.46003
- [4] J. Dieudonné, History of Functional Analysis, North-Holland Math. Stud. 49, North-Holland, Amsterdam, 1981. Zbl0478.46001
- [5] B. Fuchssteiner und J. Horváth, Die Bedeutung der Schnitteigenschaften beim Hahn-Banachschen Satz, Jahrbuch Überblicke Math. (BI, Mannheim) 1979, 107-121. Zbl0405.46001
- [6] B. Fuchssteiner and W. Lusky, Convex Cones, North-Holland Math. Stud. 56, North-Holland, Amsterdam, 1981. Zbl0478.46002
- [7] Z. Gajda, A. Smajdor and W. Smajdor, A theorem of the Hahn-Banach type and its applications, Ann. Polon. Math. 57 (1992), 243-252. Zbl0774.46003
- [8] G. Godini, Set-valued Cauchy functional equation, Rev. Roumaine Math. Pures Appl. 20 (1975), 1113-1121. Zbl0322.39013
- [9] D. B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc. 69 (1950), 89-108. Zbl0041.23203
- [10] M. Hasumi, The extension property of complex Banach spaces, Tôhoku Math. J. 10 (1958), 135-142. Zbl0087.10901
- [11] L. Holá and P. Maličký, Continuous linear selectors of linear relations, Acta Math. Univ. Comenian. 48-49 (1986), 153-157. Zbl0629.46005
- [12] J. Horváth, Some selected results of professor Baltasar Rodrí guez-Salinas, Rev. Mat. Univ. Complut. Madrid 9 (1996), 23-72. Zbl0867.01040
- [13] O. Hustad, A note on complex 𝓟₁ spaces, Israel J. Math. 16 (1973), 117-119. Zbl0284.46012
- [14] A. W. Ingleton, The Hahn-Banach theorem for non-Archimedean-valued fields, Proc. Cambridge Philos. Soc. 48 (1952), 41-45. Zbl0046.12001
- [15] A. D. Ioffe, A new proof of the equivalence of the Hahn-Banach extension and the least upper bound properties, Proc. Amer. Math. Soc. 82 (1981), 385-389. Zbl0469.46005
- [16] J. L. Kelley, Banach spaces with the intersection property, Trans. Amer. Math. Soc. 72 (1952), 323-326. Zbl0046.12002
- [17] J. L. Kelley, General Topology, Van Nostrand Reinhold, New York, 1955.
- [18] S. Mac Lane, Homology, Springer, Berlin, 1963.
- [19] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68 (1950), 28-46. Zbl0035.35402
- [20] K. Nikodem, Additive selections of additive set-valued functions, Zb. Rad. Prirod.-Mat. Fak. Univ. u Novom Sadu Ser. Mat. 18 (1988), 143-148. Zbl0686.46008
- [21] Zs. Páles, Linear selections for set-valued functions and extension of bilinear forms, Arch. Math. (Basel) 62 (1994), 427-432. Zbl0797.46005
- [22] B. Rodríguez-Salinas and L. Bou, A Hahn-Banach theorem for arbitrary vector spaces, Boll. Un. Mat. Ital. 10 (1974), 390-393. Zbl0309.47006
- [23] W. Smajdor, Subadditive and subquadratic set-valued functions, Prace Nauk. Uniw. Śląsk. Katowic. 889 (1987), 73 pp. Zbl0626.54019
- [24] W. Smajdor and J. Szczawińska, A theorem of the Hahn-Banach type, Demonstratio Math. 28 (1995), 155-160. Zbl0832.46003
- [25] T. Strömberg, The operation of infimal convolution, Dissertationes Math. 352 (1996). Zbl0858.49010
- [26] Á. Száz, Pointwise limits of nets of multilinear maps, Acta Sci. Math. (Szeged) 55 (1991), 103-117. Zbl0783.46004
- [27] Á. Száz, Foundations of Linear Analysis, Inst. Mat. Inf., Lajos Kossuth University Debrecen 1996, 200 pp. (Unfinished lecture notes in Hungarian).
- [28] Á. Száz and G. Száz, Additive relations, Publ. Math. Debrecen 20 (1973), 259-272. Zbl0362.08002
- [29] Á. Száz and G. Száz, Linear relations, Publ. Math. Debrecen 27 (1980), 219-227. Zbl0467.46015
- [30] J. Zowe, Sandwich theorems for convex operators with values in an ordered vector space, J. Math. Anal. Appl. 66 (1978), 282-396. Zbl0389.46003
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.