# Planar Ramsey numbers

Discussiones Mathematicae Graph Theory (2005)

- Volume: 25, Issue: 1-2, page 45-50
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topIzolda Gorgol. "Planar Ramsey numbers." Discussiones Mathematicae Graph Theory 25.1-2 (2005): 45-50. <http://eudml.org/doc/270703>.

@article{IzoldaGorgol2005,

abstract = {The planar Ramsey number PR(G,H) is defined as the smallest integer n for which any 2-colouring of edges of Kₙ with red and blue, where red edges induce a planar graph, leads to either a red copy of G, or a blue H. In this note we study the weak induced version of the planar Ramsey number in the case when the second graph is complete.},

author = {Izolda Gorgol},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {Ramsey number; planar graph; induced subgraph},

language = {eng},

number = {1-2},

pages = {45-50},

title = {Planar Ramsey numbers},

url = {http://eudml.org/doc/270703},

volume = {25},

year = {2005},

}

TY - JOUR

AU - Izolda Gorgol

TI - Planar Ramsey numbers

JO - Discussiones Mathematicae Graph Theory

PY - 2005

VL - 25

IS - 1-2

SP - 45

EP - 50

AB - The planar Ramsey number PR(G,H) is defined as the smallest integer n for which any 2-colouring of edges of Kₙ with red and blue, where red edges induce a planar graph, leads to either a red copy of G, or a blue H. In this note we study the weak induced version of the planar Ramsey number in the case when the second graph is complete.

LA - eng

KW - Ramsey number; planar graph; induced subgraph

UR - http://eudml.org/doc/270703

ER -

## References

top- [1] K. Appel and W. Haken, Every planar map is four colourable. Part I. Discharging, Illinois J. Math. 21 (1977) 429-490. Zbl0387.05009
- [2] K. Appel, W. Haken, and J. Koch, Every planar map is four colourable. Part II. Reducibility, Illinois J. Math. 21 (1977) 491-567. Zbl0387.05010
- [3] W. Deuber, A generalization of Ramsey's theorem, in: R. Rado, A. Hajnal and V. Sós, eds., Infinite and finite sets, vol. 10 (North-Holland, 1975) 323-332.
- [4] P. Erdős, A. Hajnal and L. Pósa, Strong embeddings of graphs into colored graphs, in: R. Rado, A. Hajnal and V. Sós, eds., Infinite and finite sets, vol. 10 (North-Holland, 1975) 585-595. Zbl0312.05123
- [5] I. Gorgol, A note on a triangle-free - complete graph induced Ramsey number, Discrete Math. 235 (2001) 159-163, doi: 10.1016/S0012-365X(00)00269-7. Zbl0978.05053
- [6] I. Gorgol, Planar and induced Ramsey numbers (Ph.D. thesis (in Polish), Adam Mickiewicz University Poznań, Poland, 2000) 51-57.
- [7] I. Gorgol and T. Łuczak, On induced Ramsey numbers, Discrete Math. 251 (2002) 87-96, doi: 10.1016/S0012-365X(01)00328-4. Zbl1004.05042
- [8] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1-7, doi: 10.4153/CJM-1955-001-4. Zbl0064.17901
- [9] H. Grötzsch, Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math. Natur. Reihe 8 (1958/1959) 109-120.
- [10] B. Grünbaum, Grötzsch's theorem on 3-colorings, Michigan Math. J. 10 (1963) 303-310. Zbl0115.40903
- [11] N. Robertson, D. Sanders, P.D. Seymour and R. Thomas, The four-colour theorem, J. Combin. Theory (B) 70 (1997) 145-161, doi: 10.1006/jctb.1997.1750. Zbl0883.05056
- [12] V. Rödl, A generalization of Ramsey theorem (Ph.D. thesis, Charles University, Prague, Czech Republic, 1973) 211-220.
- [13] R. Steinberg and C.A. Tovey, Planar Ramsey number, J. Combin. Theory (B) 59 (1993) 288-296, doi: 10.1006/jctb.1993.1070. Zbl0794.05091
- [14] K. Walker, The analog of Ramsey numbers for planar graphs, Bull. London Math. Soc. 1 (1969) 187-190, doi: 10.1112/blms/1.2.187. Zbl0184.27705

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.