On a method of determining supports of Thoma's characters of discrete groups

Ernest Płonka

Annales Polonici Mathematici (1997)

  • Volume: 67, Issue: 2, page 199-202
  • ISSN: 0066-2216

Abstract

top
We present a new approach to determining supports of extreme, normed by 1, positive definite class functions of discrete groups, i.e. characters in the sense of E. Thoma [8]. Any character of a group produces a unitary representation and thus a von Neumann algebra of linear operators with finite normal trace. We use a theorem of H. Umegaki [9] on the uniqueness of conditional expectation in finite von Neumann algebras. Some applications and examples are given.

How to cite

top

Ernest Płonka. "On a method of determining supports of Thoma's characters of discrete groups." Annales Polonici Mathematici 67.2 (1997): 199-202. <http://eudml.org/doc/270725>.

@article{ErnestPłonka1997,
abstract = {We present a new approach to determining supports of extreme, normed by 1, positive definite class functions of discrete groups, i.e. characters in the sense of E. Thoma [8]. Any character of a group produces a unitary representation and thus a von Neumann algebra of linear operators with finite normal trace. We use a theorem of H. Umegaki [9] on the uniqueness of conditional expectation in finite von Neumann algebras. Some applications and examples are given.},
author = {Ernest Płonka},
journal = {Annales Polonici Mathematici},
keywords = {positive definite functions; characters; traces; positive definite function; GNS-representation; -algebra; nilpotent groups; von Neumann algebras},
language = {eng},
number = {2},
pages = {199-202},
title = {On a method of determining supports of Thoma's characters of discrete groups},
url = {http://eudml.org/doc/270725},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Ernest Płonka
TI - On a method of determining supports of Thoma's characters of discrete groups
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 2
SP - 199
EP - 202
AB - We present a new approach to determining supports of extreme, normed by 1, positive definite class functions of discrete groups, i.e. characters in the sense of E. Thoma [8]. Any character of a group produces a unitary representation and thus a von Neumann algebra of linear operators with finite normal trace. We use a theorem of H. Umegaki [9] on the uniqueness of conditional expectation in finite von Neumann algebras. Some applications and examples are given.
LA - eng
KW - positive definite functions; characters; traces; positive definite function; GNS-representation; -algebra; nilpotent groups; von Neumann algebras
UR - http://eudml.org/doc/270725
ER -

References

top
  1. [1] R. J. Blattner, On induced representations, Amer. J. Math. 83 (1961), 79-98. Zbl0122.28405
  2. [2] A. L. Carey and W. Moran, Characters of nilpotent groups, Math. Proc. Cambridge Philos. Soc. 96 (1984), 123-137. Zbl0549.43004
  3. [3] M. Hall, The Theory of Groups, New York, Macmillan, 1969. 
  4. [4] R. E. Howe, On representation of finitely generated discrete torsion free nilpotent groups, Pacific J. Math. 73 (1977), 281-305. Zbl0387.22005
  5. [5] E. Kaniuth und R. Lasser, Zum verallgemeinerten Wienerschen Satz über diskrete nilpotente Gruppen der Klasse 3, Math. Z. 163 (1978), 39-55. 
  6. [6] E. Płonka, Remarks on characters of discrete nilpotent groups, Math. Ann. 240 (1979), 97-102. Zbl0405.43004
  7. [7] S. Sakai, C*-algebras and W*-algebras, Springer, 1971. 
  8. [8] E. Thoma, Über unitäre Darstellungen abzählbarer Gruppen, Math. Ann. 153 (1964), 111-139. Zbl0136.11603
  9. [9] H. Umegaki, Condional expectation in operator algebras, Tôhoku Math. J. 6 (1954), 1977-1981. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.