On k-factor-critical graphs
Discussiones Mathematicae Graph Theory (1996)
- Volume: 16, Issue: 1, page 41-51
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topOdile Favaron. "On k-factor-critical graphs." Discussiones Mathematicae Graph Theory 16.1 (1996): 41-51. <http://eudml.org/doc/270728>.
@article{OdileFavaron1996,
abstract = {A graph is said to be k-factor-critical if the removal of any set of k vertices results in a graph with a perfect matching. We study some properties of k-factor-critical graphs and show that many results on q-extendable graphs can be improved using this concept.},
author = {Odile Favaron},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {matching; extendable; factor; perfect matching; -extendable graphs},
language = {eng},
number = {1},
pages = {41-51},
title = {On k-factor-critical graphs},
url = {http://eudml.org/doc/270728},
volume = {16},
year = {1996},
}
TY - JOUR
AU - Odile Favaron
TI - On k-factor-critical graphs
JO - Discussiones Mathematicae Graph Theory
PY - 1996
VL - 16
IS - 1
SP - 41
EP - 51
AB - A graph is said to be k-factor-critical if the removal of any set of k vertices results in a graph with a perfect matching. We study some properties of k-factor-critical graphs and show that many results on q-extendable graphs can be improved using this concept.
LA - eng
KW - matching; extendable; factor; perfect matching; -extendable graphs
UR - http://eudml.org/doc/270728
ER -
References
top- [1] V. N. Bhat and S. F. Kapoor, The Powers of a Connected Graph are Highly Hamiltonian, Journal of Research of the National Bureau of Standards, Section B 75 (1971) 63-66. Zbl0231.05109
- [2] G. Chartrand, S. F. Kapoor and D. R. Lick, n-Hamiltonian Graphs, J. Combin. Theory 9 (1970) 308-312, doi: 10.1016/S0021-9800(70)80069-2.
- [3] O. Favaron, Stabilité, domination, irredondance et autres parametres de graphes, These d'Etat, Université de Paris-Sud, 1986.
- [4] O. Favaron, E. Flandrin and Z. Ryjáek, Factor-criticality and matching extension in DCT-graphs, Preprint.
- [5] T. Gallai, Neuer Beweis eines Tutte'schen Satzes, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963) 135-139. Zbl0129.39802
- [6] L. Lovász, On the structure of factorizable graphs, Acta Math. Acad. Sci. Hungar. 23 (1972) 179-195, doi: 10.1007/BF01889914. Zbl0247.05156
- [7] L. Lovász and M. D. Plummer, Matching Theory, Annals of Discrete Math. 29 (1986).
- [8] M. Paoli, W. W. Wong and C. K. Wong, Minimum k-Hamiltonian Graphs II, J. Graph Theory 10 (1986) 79-95, doi: 10.1002/jgt.3190100111. Zbl0592.05043
- [9] M. D. Plummer, On n-extendable graphs, Discrete Math. 31 (1980) 201-210, doi: 10.1016/0012-365X(80)90037-0.
- [10] M. D. Plummer, Toughness and matching extension in graphs, Discrete Math. 72 (1988) 311-320, doi: 10.1016/0012-365X(88)90221-X. Zbl0683.05034
- [11] M. D. Plummer, Degree sums, neighborhood unions and matching extension in graphs, in: R. Bodendiek, ed., Contemporary Methods in Graph Theory (B. I. Wiessenschaftsverlag, Mannheim, 1990) 489-502. Zbl0745.05041
- [12] M. D. Plummer, Extending matchings in graphs: A survey, Discrete Math. 127 (1994) 277-292, doi: 10.1016/0012-365X(92)00485-A.
- [13] Z. Ryjáček, Matching extension in -free graphs with independent claw centers, to appear in Discrete Math. Zbl0872.05044
- [14] W. T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (1947) 107-111, doi: 10.1112/jlms/s1-22.2.107. Zbl0029.23301
- [15] W. W. Wong and C. K. Wong, Minimum k-Hamiltonian Graphs, J. Graph Theory 8 (1984) 155-165, doi: 10.1002/jgt.3190080118. Zbl0534.05040
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.