Infinite families of tight regular tournaments
Discussiones Mathematicae Graph Theory (2007)
- Volume: 27, Issue: 2, page 299-311
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405. Zbl0776.05079
- [2] L.W. Beineke and K.B. Reid, Tournaments, in: L.W. Beineke, R.J. Wilson (Eds.), Selected Topics in Graph Theory (Academic Press, New York, 1979) 169-204. Zbl0434.05037
- [3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier Pub. Co., 1976). Zbl1226.05083
- [4] S. Bowser, C. Cable and R. Lundgren, Niche graphs and mixed pair graphs of tournaments, J. Graph Theory 31 (1999) 319-332, doi: 10.1002/(SICI)1097-0118(199908)31:4<319::AID-JGT7>3.0.CO;2-S Zbl0942.05027
- [5] H. Cho, F. Doherty, S-R. Kim and J. Lundgren, Domination graphs of regular tournaments II, Congr. Numer. 130 (1998) 95-111. Zbl0952.05052
- [6] H. Cho, S-R. Kim and J. Lundgren, Domination graphs of regular tournaments, Discrete Math. 252 (2002) 57-71, doi: 10.1016/S0012-365X(01)00289-8. Zbl0993.05106
- [7] D.C. Fisher, D. Guichard, J.R. Lundgren, S.K. Merz and K.B. Reid, Domination graphs with nontrivial components, Graphs Combin. 17 (2001) 227-236, doi: 10.1007/s003730170036. Zbl0989.05081
- [8] D.C. Fisher and J.R. Lundgren, Connected domination graphs of tournaments, J. Combin. Math. Combin. Comput. 31 (1999) 169-176. Zbl0942.05028
- [9] D.C. Fisher, J.R. Lundgren, S.K. Merz and K.B. Reid, The domination and competition graphs of a tournament, J. Graph Theory 29 (1998) 103-110, doi: 10.1002/(SICI)1097-0118(199810)29:2<103::AID-JGT6>3.0.CO;2-V Zbl0919.05024
- [10] H. Galeana-Sánchez and V. Neumann-Lara, A class of tight circulant tournaments, Discuss. Math. Graph Theory 20 (2000) 109-128, doi: 10.7151/dmgt.1111. Zbl0969.05031
- [11] B. Llano and V. Neumann-Lara, Circulant tournaments of prime order are tight, (submitted). Zbl1198.05083
- [12] J.W. Moon, Topics on Tournaments (Holt, Rinehart & Winston, New York, 1968). Zbl0191.22701
- [13] V. Neumann-Lara, The dichromatic number of a digraph, J. Combin. Theory (B) 33 (1982) 265-270, doi: 10.1016/0095-8956(82)90046-6. Zbl0506.05031
- [14] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197/198 (1999) 617-632. Zbl0928.05033
- [15] V. Neumann-Lara and M. Olsen, Tame tournaments and their dichromatic number, (submitted). Zbl1207.05072
- [16] K.B. Reid, Tournaments, in: Jonathan Gross, Jay Yellen (eds.), Handbook of Graph Theory (CRC Press, 2004) 156-184.