# A class of tight circulant tournaments

Hortensia Galeana-Sánchez; Víctor Neumann-Lara

Discussiones Mathematicae Graph Theory (2000)

- Volume: 20, Issue: 1, page 109-128
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topHortensia Galeana-Sánchez, and Víctor Neumann-Lara. "A class of tight circulant tournaments." Discussiones Mathematicae Graph Theory 20.1 (2000): 109-128. <http://eudml.org/doc/270777>.

@article{HortensiaGaleana2000,

abstract = {A tournament is said to be tight whenever every 3-colouring of its vertices using the 3 colours, leaves at least one cyclic triangle all whose vertices have different colours. In this paper, we extend the class of known tight circulant tournaments.},

author = {Hortensia Galeana-Sánchez, Víctor Neumann-Lara},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {Circulant tournament; acyclic disconnection; vertex 3-colouring; 3-chromatic triangle; tight tournament; 3-colouring; tight circulant tournaments},

language = {eng},

number = {1},

pages = {109-128},

title = {A class of tight circulant tournaments},

url = {http://eudml.org/doc/270777},

volume = {20},

year = {2000},

}

TY - JOUR

AU - Hortensia Galeana-Sánchez

AU - Víctor Neumann-Lara

TI - A class of tight circulant tournaments

JO - Discussiones Mathematicae Graph Theory

PY - 2000

VL - 20

IS - 1

SP - 109

EP - 128

AB - A tournament is said to be tight whenever every 3-colouring of its vertices using the 3 colours, leaves at least one cyclic triangle all whose vertices have different colours. In this paper, we extend the class of known tight circulant tournaments.

LA - eng

KW - Circulant tournament; acyclic disconnection; vertex 3-colouring; 3-chromatic triangle; tight tournament; 3-colouring; tight circulant tournaments

UR - http://eudml.org/doc/270777

ER -

## References

top- [1] B. Abrego, J.L. Arocha, S. Fernández Merchant and V. Neumann-Lara, Tightness problems in the plane, Discrete Math. 194 (1999) 1-11, doi: 10.1016/S0012-365X(98)00031-4. Zbl0931.05030
- [2] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405. Zbl0776.05079
- [3] J.L. Arocha, J. Bracho and V. Neumann-Lara, Tight and untight triangulated surfaces, J. Combin. Theory (B) 63 (1995) 185-199, doi: 10.1006/jctb.1995.1015. Zbl0832.05035
- [4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier Pub. Co., 1976). Zbl1226.05083
- [5] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197-198 (1999) 617-632. Zbl0928.05033
- [6] V. Neumann-Lara and M.A. Pizana, Externally loose k-dichromatic tournaments, in preparation.