A class of tight circulant tournaments
Hortensia Galeana-Sánchez; Víctor Neumann-Lara
Discussiones Mathematicae Graph Theory (2000)
- Volume: 20, Issue: 1, page 109-128
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topHortensia Galeana-Sánchez, and Víctor Neumann-Lara. "A class of tight circulant tournaments." Discussiones Mathematicae Graph Theory 20.1 (2000): 109-128. <http://eudml.org/doc/270777>.
@article{HortensiaGaleana2000,
abstract = {A tournament is said to be tight whenever every 3-colouring of its vertices using the 3 colours, leaves at least one cyclic triangle all whose vertices have different colours. In this paper, we extend the class of known tight circulant tournaments.},
author = {Hortensia Galeana-Sánchez, Víctor Neumann-Lara},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {Circulant tournament; acyclic disconnection; vertex 3-colouring; 3-chromatic triangle; tight tournament; 3-colouring; tight circulant tournaments},
language = {eng},
number = {1},
pages = {109-128},
title = {A class of tight circulant tournaments},
url = {http://eudml.org/doc/270777},
volume = {20},
year = {2000},
}
TY - JOUR
AU - Hortensia Galeana-Sánchez
AU - Víctor Neumann-Lara
TI - A class of tight circulant tournaments
JO - Discussiones Mathematicae Graph Theory
PY - 2000
VL - 20
IS - 1
SP - 109
EP - 128
AB - A tournament is said to be tight whenever every 3-colouring of its vertices using the 3 colours, leaves at least one cyclic triangle all whose vertices have different colours. In this paper, we extend the class of known tight circulant tournaments.
LA - eng
KW - Circulant tournament; acyclic disconnection; vertex 3-colouring; 3-chromatic triangle; tight tournament; 3-colouring; tight circulant tournaments
UR - http://eudml.org/doc/270777
ER -
References
top- [1] B. Abrego, J.L. Arocha, S. Fernández Merchant and V. Neumann-Lara, Tightness problems in the plane, Discrete Math. 194 (1999) 1-11, doi: 10.1016/S0012-365X(98)00031-4. Zbl0931.05030
- [2] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405. Zbl0776.05079
- [3] J.L. Arocha, J. Bracho and V. Neumann-Lara, Tight and untight triangulated surfaces, J. Combin. Theory (B) 63 (1995) 185-199, doi: 10.1006/jctb.1995.1015. Zbl0832.05035
- [4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier Pub. Co., 1976). Zbl1226.05083
- [5] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197-198 (1999) 617-632. Zbl0928.05033
- [6] V. Neumann-Lara and M.A. Pizana, Externally loose k-dichromatic tournaments, in preparation.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.