# 𝓟-bipartitions of minor hereditary properties

Piotr Borowiecki; Jaroslav Ivančo

Discussiones Mathematicae Graph Theory (1997)

- Volume: 17, Issue: 1, page 89-93
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topPiotr Borowiecki, and Jaroslav Ivančo. "𝓟-bipartitions of minor hereditary properties." Discussiones Mathematicae Graph Theory 17.1 (1997): 89-93. <http://eudml.org/doc/270763>.

@article{PiotrBorowiecki1997,

abstract = {We prove that for any two minor hereditary properties 𝓟₁ and 𝓟₂, such that 𝓟₂ covers 𝓟₁, and for any graph G ∈ 𝓟₂ there is a 𝓟₁-bipartition of G. Some remarks on minimal reducible bounds are also included.},

author = {Piotr Borowiecki, Jaroslav Ivančo},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {minor hereditary property of graphs; generalized colouring; bipartitions of graphs; bipartition; minor hereditary properties; forbidden minor},

language = {eng},

number = {1},

pages = {89-93},

title = {𝓟-bipartitions of minor hereditary properties},

url = {http://eudml.org/doc/270763},

volume = {17},

year = {1997},

}

TY - JOUR

AU - Piotr Borowiecki

AU - Jaroslav Ivančo

TI - 𝓟-bipartitions of minor hereditary properties

JO - Discussiones Mathematicae Graph Theory

PY - 1997

VL - 17

IS - 1

SP - 89

EP - 93

AB - We prove that for any two minor hereditary properties 𝓟₁ and 𝓟₂, such that 𝓟₂ covers 𝓟₁, and for any graph G ∈ 𝓟₂ there is a 𝓟₁-bipartition of G. Some remarks on minimal reducible bounds are also included.

LA - eng

KW - minor hereditary property of graphs; generalized colouring; bipartitions of graphs; bipartition; minor hereditary properties; forbidden minor

UR - http://eudml.org/doc/270763

ER -

## References

top- [1] M. Borowiecki, I. Broere and P. Mihók, Minimal reducible bounds for planar graphs (submitted). Zbl0945.05022
- [2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanisin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. Zbl0902.05026
- [3] M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances in Graph Theory (Vishwa Intern. Publications, 1991) 41-68.
- [4] P. Borowiecki, P-Bipartitions of Graphs, Vishwa Intern. J. Graph Theory 2 (1993) 109-116.
- [5] I. Broere and C.M. Mynhardt, Generalized colourings of outerplanar and planar graphs, in: Graph Theory with Applications to Algorithms and Computer Science (Willey, New York, 1985) 151-161.
- [6] G. Chartrand and L. Lesniak, Graphs and Digraphs (Second Edition, Wadsworth & Brooks/Cole, Monterey, 1986). Zbl0666.05001
- [7] G. Dirac, A property of 4-chromatic graphs and remarks on critical graphs, J. London Math. Soc. 27 (1952) 85-92, doi: 10.1112/jlms/s1-27.1.85. Zbl0046.41001
- [8] W. Goddard, Acyclic colorings of planar graphs, Discrete Math. 91 (1991) 91-94, doi: 10.1016/0012-365X(91)90166-Y. Zbl0742.05041
- [9] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995). Zbl0971.05046
- [10] P. Mihók, On the vertex partition numbers of graphs, in: M. Fiedler, ed., Graphs and Other Combinatorial Topics, Proc. Third Czech. Symp. Graph Theory, Prague, 1982 (Teubner-Verlag, Leipzig, 1983) 183-188.
- [11] P. Mihók, On the minimal reducible bound for outerplanar and planar graphs, Discrete Math. 150 (1996) 431-435, doi: 10.1016/0012-365X(95)00211-E. Zbl0911.05043
- [12] K.S. Poh, On the Linear Vertex-Arboricity of a Planar Graph, J. Graph Theory 14 (1990) 73-75, doi: 10.1002/jgt.3190140108. Zbl0705.05016
- [13] J. Wang, On point-linear arboricity of planar graphs, Discrete Math. 72 (1988) 381-384, doi: 10.1016/0012-365X(88)90229-4. Zbl0665.05010

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.