On Lee's conjecture and some results
Discussiones Mathematicae Graph Theory (2009)
- Volume: 29, Issue: 3, page 481-498
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topLixia Fan, and Zhihe Liang. "On Lee's conjecture and some results." Discussiones Mathematicae Graph Theory 29.3 (2009): 481-498. <http://eudml.org/doc/270816>.
@article{LixiaFan2009,
abstract = {S.M. Lee proposed the conjecture: for any n > 1 and any permutation f in S(n), the permutation graph P(Pₙ,f) is graceful. For any integer n > 1 and permutation f in S(n), we discuss the gracefulness of the permutation graph P(Pₙ,f) if $f = ∏_\{k = 0\}^\{l-1\} (m+2k, m+2k+1)$, and $∏_\{k=0\}^\{l-1\} (m+4k,m+4k+2)(m+4k+1,m+4k+3)$ for any positive integers m and l.},
author = {Lixia Fan, Zhihe Liang},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {permutation graph; graceful, Lee's conjecture; graceful Lee's conjecture},
language = {eng},
number = {3},
pages = {481-498},
title = {On Lee's conjecture and some results},
url = {http://eudml.org/doc/270816},
volume = {29},
year = {2009},
}
TY - JOUR
AU - Lixia Fan
AU - Zhihe Liang
TI - On Lee's conjecture and some results
JO - Discussiones Mathematicae Graph Theory
PY - 2009
VL - 29
IS - 3
SP - 481
EP - 498
AB - S.M. Lee proposed the conjecture: for any n > 1 and any permutation f in S(n), the permutation graph P(Pₙ,f) is graceful. For any integer n > 1 and permutation f in S(n), we discuss the gracefulness of the permutation graph P(Pₙ,f) if $f = ∏_{k = 0}^{l-1} (m+2k, m+2k+1)$, and $∏_{k=0}^{l-1} (m+4k,m+4k+2)(m+4k+1,m+4k+3)$ for any positive integers m and l.
LA - eng
KW - permutation graph; graceful, Lee's conjecture; graceful Lee's conjecture
UR - http://eudml.org/doc/270816
ER -
References
top- [1] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs, Proc. of Intemational Symposium, Rome 1966 (Gordon Breach, New York 1967), 349-355.
- [2] S.W. Golomb, How to number a graph? in: R.C. Read, ed., Graph Theory and Computing (Academic Press, New York, 1972) 23-27. Zbl0293.05150
- [3] Z. Liang, On the graceful conjecture of permutation graphs of paths, Ars Combin. 91 (2009) 65-82. Zbl1224.05449
- [4] J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Combin. 14 (2007) DS#6, 1-180.
- [5] J.C. Bermond, Graceful graphs, radio antennae and Fench windmills, in: R.J. Wilson, ed., Graph Theory and Combinatorics (Pitman, London, 1979), 13-37. Zbl0447.05032
- [6] A.K. Dewdney, The search for an invisible ruler that will help radio astronomers to measure the earth, Scientific American, Dec. (1986) 16-19, doi: 10.1038/scientificamerican0186-16.
- [7] S.M. Lee, K.Y. Lai, Y.S. Wang and M.K. Kiang, On the graceful permutation graphs conjecture, Congr. Numer. 103 (1994) 193-201. Zbl0837.05105
- [8] M. Maheo, Strongly graceful graphs, Discrete Math. 29 (1980) 39-46, doi: 10.1016/0012-365X(90)90285-P.
- [9] C. Delorme, Two sets of graceful graphs, J. Graph Theory 4 (1980) 247-250, doi: 10.1002/jgt.3190040214. Zbl0437.05048
- [10] R.W. Frucht and J.A. Gallian, Labelling prisms, Ars Combin. 26 (1988) 69-82. Zbl0678.05053
- [11] J.A. Gallian, Labelling prisms and prism related graphs, Congress. Numer. 59 (1987) 89-100. Zbl0642.05050
- [12] Z. Liang, H. Zhang, N. Xu, S. Ye, Y. Fan and H. Ge, Gracefulness of five permutation graphs of paths, Utilitas Mathematica 72 (2007) 241-249. Zbl1121.05104
- [13] N. Han and Z. Liang, On the graceful permutation graphs conjecture, J. Discrete Math. Sci. & Cryptography 11 (2008) 501-526. Zbl1176.05073
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.