Displaying similar documents to “On Lee's conjecture and some results”

Order of the smallest counterexample to Gallai's conjecture

Fuyuan Chen (2018)

Czechoslovak Mathematical Journal

Similarity:

In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Zamfirescu conjectured that the smallest counterexample to Gallai’s conjecture is a graph on 12 vertices. We prove that Gallai’s conjecture is true for every connected graph G with α ' ( G ) 5 , which implies that Zamfirescu’s conjecture is true.

On the generalized vanishing conjecture

Zhenzhen Feng, Xiaosong Sun (2019)

Czechoslovak Mathematical Journal

Similarity:

We show that the GVC (generalized vanishing conjecture) holds for the differential operator Λ = ( x - Φ ( y ) ) y and all polynomials P ( x , y ) , where Φ ( t ) is any polynomial over the base field. The GVC arose from the study of the Jacobian conjecture.

A geometric construction for spectrally arbitrary sign pattern matrices and the 2 n -conjecture

Dipak Jadhav, Rajendra Deore (2023)

Czechoslovak Mathematical Journal

Similarity:

We develop a geometric method for studying the spectral arbitrariness of a given sign pattern matrix. The method also provides a computational way of computing matrix realizations for a given characteristic polynomial. We also provide a partial answer to 2 n -conjecture. We determine that the 2 n -conjecture holds for the class of spectrally arbitrary patterns that have a column or row with at least n - 1 nonzero entries.

Nonempty intersection of longest paths in a graph with a small matching number

Fuyuan Chen (2015)

Czechoslovak Mathematical Journal

Similarity:

A maximum matching of a graph G is a matching of G with the largest number of edges. The matching number of a graph G , denoted by α ' ( G ) , is the number of edges in a maximum matching of G . In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Although this conjecture has been disproved, finding some nice classes of graphs that support this conjecture is still very meaningful and interesting. In this short note, we prove that Gallai’s conjecture...

A class of permutation trinomials over finite fields

Xiang-dong Hou (2014)

Acta Arithmetica

Similarity:

Let q > 2 be a prime power and f = - x + t x q + x 2 q - 1 , where t * q . We prove that f is a permutation polynomial of q ² if and only if one of the following occurs: (i) q is even and T r q / 2 ( 1 / t ) = 0 ; (ii) q ≡ 1 (mod 8) and t² = -2.

On a number theoretic conjecture on positive integral points in a 5-dimensional tetrahedron and a sharp estimate of the Dickman–De Bruijn function

Ke-Pao Lin, Xue Luo, Stephen S.-T. Yau, Huaiqing Zuo (2014)

Journal of the European Mathematical Society

Similarity:

It is well known that getting the estimate of integral points in right-angled simplices is equivalent to getting the estimate of Dickman-De Bruijn function ψ ( x , y ) which is the number of positive integers x and free of prime factors > y . Motivating from the Yau Geometry Conjecture, the third author formulated the Number Theoretic Conjecture which gives a sharp polynomial upper estimate that counts the number of positive integral points in n-dimensional ( n 3 ) real right-angled simplices. In this...

Results related to Huppert’s ρ - σ conjecture

Xia Xu, Yong Yang (2023)

Czechoslovak Mathematical Journal

Similarity:

We improve a few results related to Huppert’s ρ - σ conjecture. We also generalize a result about the covering number of character degrees to arbitrary finite groups.

On the Brocard-Ramanujan problem and generalizations

Andrzej Dąbrowski (2012)

Colloquium Mathematicae

Similarity:

Let p i denote the ith prime. We conjecture that there are precisely 28 solutions to the equation n ² - 1 = p α p k α k in positive integers n and α₁,..., α k . This conjecture implies an explicit description of the set of solutions to the Brocard-Ramanujan equation. We also propose another variant of the Brocard-Ramanujan problem: describe the set of solutions in non-negative integers of the equation n! + A = x₁²+x₂²+x₃² (A fixed).

On a problem concerning k -subdomination numbers of graphs

Bohdan Zelinka (2003)

Czechoslovak Mathematical Journal

Similarity:

One of numerical invariants concerning domination in graphs is the k -subdomination number γ k S - 11 ( G ) of a graph G . A conjecture concerning it was expressed by J. H. Hattingh, namely that for any connected graph G with n vertices and any k with 1 2 n < k n the inequality γ k S - 11 ( G ) 2 k - n holds. This paper presents a simple counterexample which disproves this conjecture. This counterexample is the graph of the three-dimensional cube and k = 5 .

Recent progress on the Jacobian Conjecture

Michiel de Bondt, Arno van den Essen (2005)

Annales Polonici Mathematici

Similarity:

We describe some recent developments concerning the Jacobian Conjecture (JC). First we describe Drużkowski’s result in [6] which asserts that it suffices to study the JC for Drużkowski mappings of the form x + ( A x ) * 3 with A² = 0. Then we describe the authors’ result of [2] which asserts that it suffices to study the JC for so-called gradient mappings, i.e. mappings of the form x - ∇f, with f k [ n ] homogeneous of degree 4. Using this result we explain Zhao’s reformulation of the JC which asserts the...

Determination of a type of permutation trinomials over finite fields

Xiang-dong Hou (2014)

Acta Arithmetica

Similarity:

Let f = a x + b x q + x 2 q - 1 q [ x ] . We find explicit conditions on a and b that are necessary and sufficient for f to be a permutation polynomial of q ² . This result allows us to solve a related problem: Let g n , q p [ x ] (n ≥ 0, p = c h a r q ) be the polynomial defined by the functional equation c q ( x + c ) n = g n , q ( x q - x ) . We determine all n of the form n = q α - q β - 1 , α > β ≥ 0, for which g n , q is a permutation polynomial of q ² .

A note on the independent domination number versus the domination number in bipartite graphs

Shaohui Wang, Bing Wei (2017)

Czechoslovak Mathematical Journal

Similarity:

Let γ ( G ) and i ( G ) be the domination number and the independent domination number of G , respectively. Rad and Volkmann posted a conjecture that i ( G ) / γ ( G ) Δ ( G ) / 2 for any graph G , where Δ ( G ) is its maximum degree (see N. J. Rad, L. Volkmann (2013)). In this work, we verify the conjecture for bipartite graphs. Several graph classes attaining the extremal bound and graphs containing odd cycles with the ratio larger than Δ ( G ) / 2 are provided as well.