Tight Embeddability of Proper and Stable Metric Spaces

F. Baudier; G. Lancien

Analysis and Geometry in Metric Spaces (2015)

  • Volume: 3, Issue: 1, page 140-156, electronic only
  • ISSN: 2299-3274

Abstract

top
We introduce the notions of almost Lipschitz embeddability and nearly isometric embeddability. We prove that for p ∈ [1,∞], every proper subset of Lp is almost Lipschitzly embeddable into a Banach space X if and only if X contains uniformly the ℓpn’s. We also sharpen a result of N. Kalton by showing that every stable metric space is nearly isometrically embeddable in the class of reflexive Banach spaces.

How to cite

top

F. Baudier, and G. Lancien. "Tight Embeddability of Proper and Stable Metric Spaces." Analysis and Geometry in Metric Spaces 3.1 (2015): 140-156, electronic only. <http://eudml.org/doc/270830>.

@article{F2015,
abstract = {We introduce the notions of almost Lipschitz embeddability and nearly isometric embeddability. We prove that for p ∈ [1,∞], every proper subset of Lp is almost Lipschitzly embeddable into a Banach space X if and only if X contains uniformly the ℓpn’s. We also sharpen a result of N. Kalton by showing that every stable metric space is nearly isometrically embeddable in the class of reflexive Banach spaces.},
author = {F. Baudier, G. Lancien},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {almost Lipschitz embeddability; nearly isometric embeddability; proper metric spaces; stable metric spaces; Lipschitz embeddability},
language = {eng},
number = {1},
pages = {140-156, electronic only},
title = {Tight Embeddability of Proper and Stable Metric Spaces},
url = {http://eudml.org/doc/270830},
volume = {3},
year = {2015},
}

TY - JOUR
AU - F. Baudier
AU - G. Lancien
TI - Tight Embeddability of Proper and Stable Metric Spaces
JO - Analysis and Geometry in Metric Spaces
PY - 2015
VL - 3
IS - 1
SP - 140
EP - 156, electronic only
AB - We introduce the notions of almost Lipschitz embeddability and nearly isometric embeddability. We prove that for p ∈ [1,∞], every proper subset of Lp is almost Lipschitzly embeddable into a Banach space X if and only if X contains uniformly the ℓpn’s. We also sharpen a result of N. Kalton by showing that every stable metric space is nearly isometrically embeddable in the class of reflexive Banach spaces.
LA - eng
KW - almost Lipschitz embeddability; nearly isometric embeddability; proper metric spaces; stable metric spaces; Lipschitz embeddability
UR - http://eudml.org/doc/270830
ER -

References

top
  1. [1] Y. Bartal and L. Gottlieb. Dimension reduction techniques for ℓp, 1 ℓ p < ∞, with applications. arXiv:1408.1789, 2014.  
  2. [2] F. Baudier. Quantitative nonlinear embeddings into Lebesgue sequence spaces. J. Topol. Anal., to appear, arXiv: 1210.0588 (2013), 32 pages.  Zbl06561556
  3. [3] F. Baudier. Metrical characterization of super-reflexivity and linear type of Banach spaces. Arch. Math., 89:419–429, 2007. [WoS][Crossref] Zbl1142.46007
  4. [4] F. Baudier. Plongements des espaces métriques dans les espaces de Banach. Ph.D. Thesis, 100 pages (French), 2009.  
  5. [5] F. Baudier. Embeddings of proper metric spaces into Banach spaces. Hous. J. Math., 38:209–223, 2012.  Zbl1298.46019
  6. [6] F. Baudier and G. Lancien. Embeddings of locally finite metric spaces into Banach spaces. Proc. Amer. Math. Soc., 136: 1029–1033, 2008.  Zbl1142.46037
  7. [7] Y. Benyamini and J. Lindenstrauss. Geometric nonlinear functional analysis. Vol. 1, volume 48 of American Mathematical Society Colloquium Publications. American Mathematical Society, 2000.  Zbl0946.46002
  8. [8] W. J. Davis, T. Figiel,W. B. Johnson, and A. Pełczynski. Factoring weakly compact operators. J. Funct. Anal., 17:311–327, 1974. [Crossref] Zbl0306.46020
  9. [9] P. Embrechts and M. Hofert. A note on generalized inverses. Math. Methods Oper. Res., 77(3):423–432, 2013.  Zbl1281.60014
  10. [10] D. J. H. Garling. Stable Banach spaces, random measures and Orlicz function spaces. In Probability measures on groups (Oberwolfach, 1981), volume 928 of Lecture Notes in Math., pages 121–175. Springer, Berlin-New York, 1982.  
  11. [11] G. Godefroy and N. J. Kalton. Lipschitz-free Banach spaces. Studia Math., 159:121–141, 2003.  Zbl1059.46058
  12. [12] M. Gromov. Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295.  Zbl0841.20039
  13. [13] E. Guentner and J. Kaminker. Exactness and uniform embeddability of discrete groups. J. London Math. Soc. (2), 70(3): 703–718, 2004.  Zbl1082.46049
  14. [14] S. Heinrich and P. Mankiewicz. Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces. Studia Math., 73:225–251, 1982.  Zbl0506.46008
  15. [15] R. C. James. Uniformly non-square Banach spaces. Ann. of Math. (2), 80:542–550, 1964.  Zbl0132.08902
  16. [16] W. B. Johnson and J. Lindenstrauss, editors. Handbook of the geometry of Banach spaces. Vol. I. North-Holland Publishing Co., Amsterdam, 2001.  Zbl0970.46001
  17. [17] N. J. Kalton. Coarse and uniform embeddings into reflexive spaces. Quart. J. Math. (Oxford), 58:393–414, 2007. [WoS] Zbl1148.46046
  18. [18] N. J. Kalton and N. L. Randrianarivony. The coarse Lipschitz structure of `p `q. Math. Ann., 341:223–237, 2008.  Zbl1146.46050
  19. [19] J. L. Krivine. Sous-espaces de dimension finie des espaces de Banach réticulés. Ann. of Math. (2), 104:1–29, 1976.  Zbl0329.46008
  20. [20] J. L. Krivine and B. Maurey. Espaces de Banach stables. Israel J. Math., 39:273–295, 1981.  Zbl0504.46013
  21. [21] Å. Lima, O. Nygaard, and E. Oja. Isometric factorization of weakly compact operators and the approximation property. Israel J. Math., 119:325–348, 2000.  Zbl0983.46024
  22. [22] Y. Lindenstrauss and L. Tzafriri. Classical Banach Spaces, volume 338 of Lecture Notes Math. Springer-Verlag, 1979.  
  23. [23] A. I. Markushevich. On a basis in a wide sense for linear spaces. Dokl. Akad. Nauk., 41:241–244, 1943.  
  24. [24] B.Maurey and G. Pisier. Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math., 58:45–90, 1976.  Zbl0344.47014
  25. [25] P. Nowak and G. Yu. Large scale geometry. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2012.  Zbl1264.53051
  26. [26] M. I. Ostrovskii. Embeddability of locally finite metric spaces into Banach spaces is finitely determined. Proc. Amer. Math. Soc., 140(8):2721–2730, 2012.  Zbl1276.46013
  27. [27] R. Ostrovsky and Y. Rabani. Polynomial-time approximation schemes for geometric min-sum median clustering. J. ACM, 49 (2):139–156 (electronic), 2002. [Crossref] Zbl1323.68574
  28. [28] M. Ribe. On uniformly homeomorphic normed spaces. Ark. Mat., 14:237–244, 1976. [Crossref] Zbl0336.46018
  29. [29] J. H. Wells and L. R. Williams. Embeddings and extensions in analysis. Springer-Verlag, New York-Heidelberg, 1975. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84.  Zbl0324.46034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.