Displaying similar documents to “Tight Embeddability of Proper and Stable Metric Spaces”

Infinitesimal Structure of Differentiability Spaces, and Metric Differentiation

Jeff Cheeger, Bruce Kleiner, Andrea Schioppa (2016)

Analysis and Geometry in Metric Spaces

Similarity:

We prove metric differentiation for differentiability spaces in the sense of Cheeger [10, 14, 27]. As corollarieswe give a new proof of one of the main results of [14], a proof that the Lip-lip constant of any Lip-lip space in the sense of Keith [27] is equal to 1, and new nonembeddability results.

On the Lifshits Constant for Hyperspaces

K. Leśniak (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

The Lifshits theorem states that any k-uniformly Lipschitz map with a bounded orbit on a complete metric space X has a fixed point provided k < ϰ(X) where ϰ(X) is the so-called Lifshits constant of X. For many spaces we have ϰ(X) > 1. It is interesting whether we can use the Lifshits theorem in the theory of iterated function systems. Therefore we investigate the value of the Lifshits constant for several classes of hyperspaces.

Spaces of Lipschitz functions on metric spaces

Diethard Pallaschke, Dieter Pumplün (2015)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.

Best constants for Lipschitz embeddings of metric spaces into c₀

N. J. Kalton, G. Lancien (2008)

Fundamenta Mathematicae

Similarity:

We answer a question of Aharoni by showing that every separable metric space can be Lipschitz 2-embedded into c₀ and this result is sharp; this improves earlier estimates of Aharoni, Assouad and Pelant. We use our methods to examine the best constant for Lipschitz embeddings of the classical p -spaces into c₀ and give other applications. We prove that if a Banach space embeds almost isometrically into c₀, then it embeds linearly almost isometrically into c₀. We also study Lipschitz embeddings...

Bi-Lipschitz embeddings of hyperspaces of compact sets

Jeremy T. Tyson (2005)

Fundamenta Mathematicae

Similarity:

We study the bi-Lipschitz embedding problem for metric compacta hyperspaces. We observe that the compacta hyperspace K(X) of any separable, uniformly disconnected metric space X admits a bi-Lipschitz embedding in ℓ². If X is a countable compact metric space containing at most n nonisolated points, there is a Lipschitz embedding of K(X) in n + 1 ; in the presence of an additional convergence condition, this embedding may be chosen to be bi-Lipschitz. By way of contrast, the hyperspace K([0,1])...

Menger curvature and Lipschitz parametrizations in metric spaces

Immo Hahlomaa (2005)

Fundamenta Mathematicae

Similarity:

We show that pointwise bounds on the Menger curvature imply Lipschitz parametrization for general compact metric spaces. We also give some estimates on the optimal Lipschitz constants of the parametrizing maps for the metric spaces in Ω(ε), the class of bounded metric spaces E such that the maximum angle for every triple in E is at least π/2 + arcsinε. Finally, we extend Peter Jones's travelling salesman theorem to general metric spaces.

Lipschitz approximable Banach spaces

Gilles Godefroy (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show the existence of Lipschitz approximable separable spaces which fail Grothendieck's approximation property. This follows from the observation that any separable space with the metric compact approximation property is Lipschitz approximable. Some related results are spelled out.

Spaces of Lipschitz and Hölder functions and their applications.

Nigel J. Kalton (2004)

Collectanea Mathematica

Similarity:

We study the structure of Lipschitz and Hölder-type spaces and their preduals on general metric spaces, and give applications to the uniform structure of Banach spaces. In particular we resolve a problem of Weaver who asks wether if M is a compact metric space and 0 &lt; α &lt; 1, it is always true the space of Hölder continuous functions of class α is isomorphic to l. We show that, on the contrary, if M is a compact convex subset of a Hilbert space this isomorphism holds if...