Extremal (in)dependence of a maximum autoregressive process

Marta Ferreira

Discussiones Mathematicae Probability and Statistics (2013)

  • Volume: 33, Issue: 1-2, page 47-64
  • ISSN: 1509-9423

Abstract

top
Maximum autoregressive processes like MARMA (Davis and Resnick, [5] 1989) or power MARMA (Ferreira and Canto e Castro, [12] 2008) have singular joint distributions, an unrealistic feature in most applications. To overcome this pitfall, absolute continuous versions were presented in Alpuim and Athayde [2] (1990) and Ferreira and Canto e Castro [14] (2010b), respectively. We consider an extended version of absolute continuous maximum autoregressive processes that accommodates both asymptotic tail dependence and independence. A full characterization of the bivariate lag-m tail dependence is presented. This will be useful in an adjustment procedure of the model to real data. An illustration with financial data is presented at the end.

How to cite

top

Marta Ferreira. "Extremal (in)dependence of a maximum autoregressive process." Discussiones Mathematicae Probability and Statistics 33.1-2 (2013): 47-64. <http://eudml.org/doc/270885>.

@article{MartaFerreira2013,
abstract = {Maximum autoregressive processes like MARMA (Davis and Resnick, [5] 1989) or power MARMA (Ferreira and Canto e Castro, [12] 2008) have singular joint distributions, an unrealistic feature in most applications. To overcome this pitfall, absolute continuous versions were presented in Alpuim and Athayde [2] (1990) and Ferreira and Canto e Castro [14] (2010b), respectively. We consider an extended version of absolute continuous maximum autoregressive processes that accommodates both asymptotic tail dependence and independence. A full characterization of the bivariate lag-m tail dependence is presented. This will be useful in an adjustment procedure of the model to real data. An illustration with financial data is presented at the end.},
author = {Marta Ferreira},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {extreme value theory; autoregressive processes; tail dependence; asymptotic tail independence; maximum autoregressive processes},
language = {eng},
number = {1-2},
pages = {47-64},
title = {Extremal (in)dependence of a maximum autoregressive process},
url = {http://eudml.org/doc/270885},
volume = {33},
year = {2013},
}

TY - JOUR
AU - Marta Ferreira
TI - Extremal (in)dependence of a maximum autoregressive process
JO - Discussiones Mathematicae Probability and Statistics
PY - 2013
VL - 33
IS - 1-2
SP - 47
EP - 64
AB - Maximum autoregressive processes like MARMA (Davis and Resnick, [5] 1989) or power MARMA (Ferreira and Canto e Castro, [12] 2008) have singular joint distributions, an unrealistic feature in most applications. To overcome this pitfall, absolute continuous versions were presented in Alpuim and Athayde [2] (1990) and Ferreira and Canto e Castro [14] (2010b), respectively. We consider an extended version of absolute continuous maximum autoregressive processes that accommodates both asymptotic tail dependence and independence. A full characterization of the bivariate lag-m tail dependence is presented. This will be useful in an adjustment procedure of the model to real data. An illustration with financial data is presented at the end.
LA - eng
KW - extreme value theory; autoregressive processes; tail dependence; asymptotic tail independence; maximum autoregressive processes
UR - http://eudml.org/doc/270885
ER -

References

top
  1. [1] M.T. Alpuim, An extremal Markovian sequence, J. Appl. Probab. 26 (1989) 219-232. doi: 10.2307/3214030. Zbl0677.60026
  2. [2] M.T. Alpuim and E. Athayde, On the stationary distribution of some extremal Markovian sequences, J. Appl. Probab. 27 (1990) 291-302. doi: 10.2307/3214648. 
  3. [3] J. Beirlant, Y. Goegebeur, J. Segers and J. Teugels, Statistics of Extremes: Theory and Application (John Wiley, Chichester, UK, 2004). doi: 10.1002/0470012382. Zbl1070.62036
  4. [4] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance (Springer-Verlag, Berlin, 1997). 
  5. [5] R. Davis and S. Resnick, Basic properties and prediction of max-ARMA processes, Adv. Appl. Probab. 21 (1989) 781-803. doi: 10.2307/1427767. Zbl0716.62098
  6. [6] A.L.M. Dekkers, J.H.J. Einmahl and L. de Haan, A moment estimator for the index of an extreme value distribution, Ann. Statist. 17 (1989) 1833-1855. doi: 10.1214/aos/1176347397. Zbl0701.62029
  7. [7] D. Dietrich, L. de Haan and J. Hüsler, Testing extreme value conditions, Extremes 5 (2000) 71-85. doi: 10.1023/A:1020934126695. Zbl1035.60050
  8. [8] G. Draisma, H. Drees, A. Ferreira and L. de Haan, Bivariate tail estimation: dependence in asymptotic independence, Bernoulli 10 (2004) 251-280. doi: 10.3150/bj/1082380219. Zbl1058.62043
  9. [9] H. Drees, Extreme quantile estimation for dependent data with applications to finance, Bernoulli 9 (2003) 617-657. doi: 10.3150/bj/1066223272. Zbl1040.62077
  10. [10] M. Ferreira, On tail dependence: a characterization for first-order max-autoregressive processes, Math. Notes 90 (2011) 103-114. doi: 10.1134/S0001434611110277. 
  11. [11] M. Ferreira, Parameter estimation and dependence characterization of the MAR(1) process, ProbStat Forum 5 (2012) 107-111. Zbl1274.62587
  12. [12] M. Ferreira and L. Canto e Castro, Tail and dependence behaviour of levels that persist for a fixed period of time, Extremes 11 (2008) 113-133. doi: 10.1007/s10687-007-0046-y. Zbl1199.60185
  13. [13] M. Ferreira and L. Canto e Castro, Asymptotic and pre-asymptotic tail behavior of a power max-autoregressive model, ProbStat Forum 3 (2010a) 91-107. Zbl1193.62158
  14. [14] M. Ferreira and L. Canto e Castro, Modeling rare events through a pRARMAX process, J. Statist. Plann. Inference 140 (2010b) 3552-3566. doi: 10.1016/j.jspi.2010.05.024. Zbl05773131
  15. [15] M. Ferreira and L. Canto e Castro, A Method For Fitting A pRARMAX Model: An Application To Financial Data, in: Proceedings of The World Congress on Engineering 2010 Vol. III, Lecture Notes in Engineering and Computer Science (Ed(s)), (London, U.K., 2010c) 2022-2026. 
  16. [16] G. Frahm, M. Junker and R. Schmidt, Estimating the tail-dependence coefficient: properties and pitfalls, Insurance Math. Econom. 37 (2005) 80-100. doi: 10.1016/j.insmatheco.2005.05.008. Zbl1101.62012
  17. [17] J.E. Heffernan, J.A. Tawn and Z. Zhang, Asymptotically (in)dependent multivariate maxima of moving maxima processes, Extremes 10 (2007) 57-82. doi: 10.1007/s10687-007-0035-1. Zbl1150.60030
  18. [18] B.M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist. 3 (1975) 1163-1174. doi: 10.1214/aos/1176343247. Zbl0323.62033
  19. [19] A.V. Lebedev, Statistical analysis of first-order MARMA processes, Math. Notes 83 (2008) 506-511. doi: 10.1134/S0001434608030243. Zbl1152.62059
  20. [20] Z. Zhang, A New Class of Tail-Dependent Time Series Models and Its Applications in Financial Time Series, Advances in Econometrics 20B (2005) 323-358. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.