Fractional distance domination in graphs

S. Arumugam; Varughese Mathew; K. Karuppasamy

Discussiones Mathematicae Graph Theory (2012)

  • Volume: 32, Issue: 3, page 449-459
  • ISSN: 2083-5892

Abstract

top
Let G = (V,E) be a connected graph and let k be a positive integer with k ≤ rad(G). A subset D ⊆ V is called a distance k-dominating set of G if for every v ∈ V - D, there exists a vertex u ∈ D such that d(u,v) ≤ k. In this paper we study the fractional version of distance k-domination and related parameters.

How to cite

top

S. Arumugam, Varughese Mathew, and K. Karuppasamy. "Fractional distance domination in graphs." Discussiones Mathematicae Graph Theory 32.3 (2012): 449-459. <http://eudml.org/doc/270889>.

@article{S2012,
abstract = {Let G = (V,E) be a connected graph and let k be a positive integer with k ≤ rad(G). A subset D ⊆ V is called a distance k-dominating set of G if for every v ∈ V - D, there exists a vertex u ∈ D such that d(u,v) ≤ k. In this paper we study the fractional version of distance k-domination and related parameters.},
author = {S. Arumugam, Varughese Mathew, K. Karuppasamy},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {domination; distance k-domination; distance k-dominating function; k-packing; fractional distance k-domination; distance -domination; distance -dominating function; -packing; fractional distance -domination},
language = {eng},
number = {3},
pages = {449-459},
title = {Fractional distance domination in graphs},
url = {http://eudml.org/doc/270889},
volume = {32},
year = {2012},
}

TY - JOUR
AU - S. Arumugam
AU - Varughese Mathew
AU - K. Karuppasamy
TI - Fractional distance domination in graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2012
VL - 32
IS - 3
SP - 449
EP - 459
AB - Let G = (V,E) be a connected graph and let k be a positive integer with k ≤ rad(G). A subset D ⊆ V is called a distance k-dominating set of G if for every v ∈ V - D, there exists a vertex u ∈ D such that d(u,v) ≤ k. In this paper we study the fractional version of distance k-domination and related parameters.
LA - eng
KW - domination; distance k-domination; distance k-dominating function; k-packing; fractional distance k-domination; distance -domination; distance -dominating function; -packing; fractional distance -domination
UR - http://eudml.org/doc/270889
ER -

References

top
  1. [1] S. Arumugam, K. Karuppasamy and I. Sahul Hamid, Fractional global domination in graphs, Discuss. Math. Graph Theory 30 (2010) 33-44, doi: 10.7151/dmgt.1474. Zbl1214.05100
  2. [2] E.J. Cockayne, G. Fricke, S.T. Hedetniemi and C.M. Mynhardt, Properties of minimal dominating functions of graphs, Ars Combin. 41 (1995) 107-115. Zbl0840.05090
  3. [3] G. Chartrand and L. Lesniak, Graphs & Digraphs, Fourth Edition, Chapman & Hall/CRC (2005). 
  4. [4] G.S. Domke, S.T. Hedetniemi and R.C. Laskar, Generalized packings and coverings of graphs, Congr. Numer. 62 (1988) 259-270. Zbl0722.05052
  5. [5] G.S. Domke, S.T. Hedetniemi and R.C. Laskar, Fractional packings, coverings, and irredundance in graphs, Congr. Numer. 66 (1988) 227-238. Zbl0722.05052
  6. [6] D.L. Grinstead and P.J. Slater, Fractional domination and fractional packings in graphs, Congr. Numer. 71 (1990) 153-172. Zbl0691.05043
  7. [7] E.O. Hare, k-weight domination and fractional domination of Pₘ × Pₙ, Congr. Numer. 78 (1990) 71-80. 
  8. [8] J.H. Hattingh, M.A. Henning and J.L. Walters, On the computational complexity of upper distance fractional domination, Australas. J. Combin. 7 (1993) 133-144. Zbl0777.05072
  9. [9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). Zbl0890.05002
  10. [10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs: Advanced Topics (Marcel Dekker, New York, 1998). Zbl0883.00011
  11. [11] S.M. Hedetniemi, S.T. Hedetniemi and T.V. Wimer, Linear time resource allocation algorithms for trees, Technical report URI -014, Department of Mathematics, Clemson University (1987). Zbl0643.68093
  12. [12] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233. Zbl0315.05102
  13. [13] R.R. Rubalcaba, A. Schneider and P.J. Slater, A survey on graphs which have equal domination and closed neighborhood packing numbers, AKCE J. Graphs. Combin. 3 (2006) 93-114. Zbl1121.05088
  14. [14] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs (John Wiley & Sons, New York, 1997). Zbl0891.05003
  15. [15] D. Vukičević and A. Klobučar, k-dominating sets on linear benzenoids and on the infinite hexagonal grid, Croatica Chemica Acta 80 (2007) 187-191. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.