Fractional global domination in graphs

Subramanian Arumugam; Kalimuthu Karuppasamy; Ismail Sahul Hamid

Discussiones Mathematicae Graph Theory (2010)

  • Volume: 30, Issue: 1, page 33-44
  • ISSN: 2083-5892

Abstract

top
Let G = (V,E) be a graph. A function g:V → [0,1] is called a global dominating function (GDF) of G, if for every v ∈ V, g ( N [ v ] ) = u N [ v ] g ( u ) 1 and g ( N ( v ) ¯ ) = u N ( v ) g ( u ) 1 . A GDF g of a graph G is called minimal (MGDF) if for all functions f:V → [0,1] such that f ≤ g and f(v) ≠ g(v) for at least one v ∈ V, f is not a GDF. The fractional global domination number γ f g ( G ) is defined as follows: γ f g ( G ) = min|g|:g is an MGDF of G where | g | = v V g ( v ) . In this paper we initiate a study of this parameter.

How to cite

top

Subramanian Arumugam, Kalimuthu Karuppasamy, and Ismail Sahul Hamid. "Fractional global domination in graphs." Discussiones Mathematicae Graph Theory 30.1 (2010): 33-44. <http://eudml.org/doc/270977>.

@article{SubramanianArumugam2010,
abstract = {Let G = (V,E) be a graph. A function g:V → [0,1] is called a global dominating function (GDF) of G, if for every v ∈ V, $g(N[v]) = ∑_\{u ∈ N[v]\}g(u) ≥ 1$ and $g(\overline\{N(v)\}) = ∑_\{u ∉ N(v)\}g(u) ≥ 1$. A GDF g of a graph G is called minimal (MGDF) if for all functions f:V → [0,1] such that f ≤ g and f(v) ≠ g(v) for at least one v ∈ V, f is not a GDF. The fractional global domination number $γ_\{fg\}(G)$ is defined as follows: $γ_\{fg\}(G)$ = min|g|:g is an MGDF of G where $|g| = ∑_\{v ∈ V\} g(v)$. In this paper we initiate a study of this parameter.},
author = {Subramanian Arumugam, Kalimuthu Karuppasamy, Ismail Sahul Hamid},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {domination; global domination; dominating function; global dominating function; fractional global domination number},
language = {eng},
number = {1},
pages = {33-44},
title = {Fractional global domination in graphs},
url = {http://eudml.org/doc/270977},
volume = {30},
year = {2010},
}

TY - JOUR
AU - Subramanian Arumugam
AU - Kalimuthu Karuppasamy
AU - Ismail Sahul Hamid
TI - Fractional global domination in graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2010
VL - 30
IS - 1
SP - 33
EP - 44
AB - Let G = (V,E) be a graph. A function g:V → [0,1] is called a global dominating function (GDF) of G, if for every v ∈ V, $g(N[v]) = ∑_{u ∈ N[v]}g(u) ≥ 1$ and $g(\overline{N(v)}) = ∑_{u ∉ N(v)}g(u) ≥ 1$. A GDF g of a graph G is called minimal (MGDF) if for all functions f:V → [0,1] such that f ≤ g and f(v) ≠ g(v) for at least one v ∈ V, f is not a GDF. The fractional global domination number $γ_{fg}(G)$ is defined as follows: $γ_{fg}(G)$ = min|g|:g is an MGDF of G where $|g| = ∑_{v ∈ V} g(v)$. In this paper we initiate a study of this parameter.
LA - eng
KW - domination; global domination; dominating function; global dominating function; fractional global domination number
UR - http://eudml.org/doc/270977
ER -

References

top
  1. [1] S. Arumugam and R. Kala, A note on global domination in graphs, Ars Combin. 93 (2009) 175-180. Zbl1224.05357
  2. [2] S. Arumugam and K. Rejikumar, Basic minimal dominating functions, Utilitas Mathematica 77 (2008) 235-247. Zbl1160.05046
  3. [3] G. Chartrand and L. Lesniak, Graphs & Digraphs (Fourth Edition, Chapman & Hall/CRC, 2005). 
  4. [4] E.J. Cockayne, G. MacGillivray and C.M. Mynhardt, Convexity of minimal dominating funcitons of trees-II, Discrete Math. 125 (1994) 137-146, doi: 10.1016/0012-365X(94)90154-6. Zbl0793.05117
  5. [5] E.J. Cockayne, C.M. Mynhardt and B. Yu, Universal minimal total dominating functions in graphs, Networks 24 (1994) 83-90, doi: 10.1002/net.3230240205. Zbl0804.90122
  6. [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., 1998). Zbl0890.05002
  7. [7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., 1998). Zbl0883.00011
  8. [8] S.M. Hedetniemi, S.T. Hedetniemi and T.V. Wimer, Linear time resource allocation algorithms for trees, Technical report URI -014, Department of Mathematics, Clemson University (1987). Zbl0643.68093
  9. [9] E. Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci. 23 (1989) 377-385. Zbl0729.05045
  10. [10] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approch to the Theory of Graphs (John Wiley & Sons, New York, 1997). Zbl0891.05003

NotesEmbed ?

top

You must be logged in to post comments.