Fractional global domination in graphs
Subramanian Arumugam; Kalimuthu Karuppasamy; Ismail Sahul Hamid
Discussiones Mathematicae Graph Theory (2010)
- Volume: 30, Issue: 1, page 33-44
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S. Arumugam and R. Kala, A note on global domination in graphs, Ars Combin. 93 (2009) 175-180. Zbl1224.05357
- [2] S. Arumugam and K. Rejikumar, Basic minimal dominating functions, Utilitas Mathematica 77 (2008) 235-247. Zbl1160.05046
- [3] G. Chartrand and L. Lesniak, Graphs & Digraphs (Fourth Edition, Chapman & Hall/CRC, 2005).
- [4] E.J. Cockayne, G. MacGillivray and C.M. Mynhardt, Convexity of minimal dominating funcitons of trees-II, Discrete Math. 125 (1994) 137-146, doi: 10.1016/0012-365X(94)90154-6. Zbl0793.05117
- [5] E.J. Cockayne, C.M. Mynhardt and B. Yu, Universal minimal total dominating functions in graphs, Networks 24 (1994) 83-90, doi: 10.1002/net.3230240205. Zbl0804.90122
- [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., 1998). Zbl0890.05002
- [7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., 1998). Zbl0883.00011
- [8] S.M. Hedetniemi, S.T. Hedetniemi and T.V. Wimer, Linear time resource allocation algorithms for trees, Technical report URI -014, Department of Mathematics, Clemson University (1987). Zbl0643.68093
- [9] E. Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci. 23 (1989) 377-385. Zbl0729.05045
- [10] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approch to the Theory of Graphs (John Wiley & Sons, New York, 1997). Zbl0891.05003