On transitive orientations of G-ê
Discussiones Mathematicae Graph Theory (2009)
- Volume: 29, Issue: 3, page 423-467
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topMichael Andresen. "On transitive orientations of G-ê." Discussiones Mathematicae Graph Theory 29.3 (2009): 423-467. <http://eudml.org/doc/270909>.
@article{MichaelAndresen2009,
abstract = {A comparability graph is a graph whose edges can be oriented transitively. Given a comparability graph G = (V,E) and an arbitrary edge ê∈ E we explore the question whether the graph G-ê, obtained by removing the undirected edge ê, is a comparability graph as well. We define a new substructure of implication classes and present a complete mathematical characterization of all those edges.},
author = {Michael Andresen},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {comparability graph; edge deletion; transitive orientation; Triangle Lemma; Γ-components; open shop scheduling; irreducibility; triangle lemma; -components},
language = {eng},
number = {3},
pages = {423-467},
title = {On transitive orientations of G-ê},
url = {http://eudml.org/doc/270909},
volume = {29},
year = {2009},
}
TY - JOUR
AU - Michael Andresen
TI - On transitive orientations of G-ê
JO - Discussiones Mathematicae Graph Theory
PY - 2009
VL - 29
IS - 3
SP - 423
EP - 467
AB - A comparability graph is a graph whose edges can be oriented transitively. Given a comparability graph G = (V,E) and an arbitrary edge ê∈ E we explore the question whether the graph G-ê, obtained by removing the undirected edge ê, is a comparability graph as well. We define a new substructure of implication classes and present a complete mathematical characterization of all those edges.
LA - eng
KW - comparability graph; edge deletion; transitive orientation; Triangle Lemma; Γ-components; open shop scheduling; irreducibility; triangle lemma; -components
UR - http://eudml.org/doc/270909
ER -
References
top- [1] H. Bräsel, Lateinische Rechtecke und Maschinenbelegung (Habilitationsschrift. Technische Universität Otto-von-Guericke Magdeburg, 1990).
- [2] H. Bräsel, Matrices in Shop Scheduling Problems, in: M. Morlock, C. Schwindt, N. Trautmann and J. Zimmermann, eds, Perspectives on Operations Research - Essays in Honor of Klaus Neumann (Gabler Edition Wissenschaft, Deutscher Universitätsverlag, 2006), 17-43.
- [3] H. Bräsel, M. Harborth, T. Tautenhahn and P. Willenius, On the set of solutions of an open shop Problem, Ann. Oper. Res. 92 (1999) 241-263, doi: 10.1023/A:1018938915709. Zbl0958.90035
- [4] A. Cournier and M. Habib, A new linear algorithm for modular decomposition, in: S. Tison ed., Trees in Algebra and Programming, CAAP '94, 19th International Colloquium 787 of Lecture Notes in Computer Science (Springer Verlag, 1994) 68-82.
- [5] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25-66, doi: 10.1007/BF02020961.
- [6] P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and of interval graphs, Canad. J. Math. 16 (1964) 539-548, doi: 10.4153/CJM-1964-055-5. Zbl0121.26003
- [7] M.C. Golumbic, Comparability graphs and a new matroid, J. Combin. Theory (B) 22 (1977) 68-90, doi: 10.1016/0095-8956(77)90049-1. Zbl0352.05023
- [8] M.C. Golumbic, The complexity of comparability graph recognition and coloring, Comp. 18 (1977) 199-208, doi: 10.1007/BF02253207. Zbl0365.05025
- [9] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, 1980).
- [10] R.M. McConnell and J.P. Spinrad, Linear-time modular decomposition and efficient transitive orientation of comparability graphs, in: Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms 5 (1994) 536-545. Zbl0867.05068
- [11] R.M. McConnell and J.P. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1999) 189-241, doi: 10.1016/S0012-365X(98)00319-7. Zbl0933.05146
- [12] R.M. McConnell and J.P. Spinrad, Ordered vertex partitioning, Discrete Math. and Theor. Comp. Sci. 4 (2000) 45-60. Zbl0946.68101
- [13] M. Moerig, Modulare Dekomposition durch geordnete Partitionierung der Knotenmenge: Grundlagen und Implementierung, (Diplomarbeit, Otto-von-Guericke-Universität Magdeburg, 2006).
- [14] A. Natanzon, R. Shamir and R. Sharan, Complexity classification of some edge modification problems, Discrete Appl. Math. 113 (2001) 109-128, doi: 10.1016/S0166-218X(00)00391-7. Zbl0982.68104
- [15] K. Simon, Effiziente Algorithmen für perfekte Graphen (Teubner, 1992).
- [16] P. Willenius, Irreduzibilitätstheorie bei Shop-Scheduling-Problemen (Dissertationsschrift, Shaker Verlag, 2000).
- [17] M. Yannakakis, Edge deletion problems, SIAM J. Comput. 10 (2) (1981) 297-309, doi: 10.1137/0210021. Zbl0468.05043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.