A-manifolds on a principal torus bundle over an almost Hodge A-manifold base

Grzegorz Zborowski

Annales UMCS, Mathematica (2015)

  • Volume: 69, Issue: 1, page 109-119
  • ISSN: 2083-7402

Abstract

top
An A-manifold is a manifold whose Ricci tensor is cyclic-parallel, equivalently it satisfies ∇XXRic(X,X) = 0. This condition generalizes the Einstein condition. We construct new examples of A-manifolds on r-torus bundles over a base which is a product of almost Hodge A-manifolds

How to cite

top

Grzegorz Zborowski. "A-manifolds on a principal torus bundle over an almost Hodge A-manifold base." Annales UMCS, Mathematica 69.1 (2015): 109-119. <http://eudml.org/doc/270911>.

@article{GrzegorzZborowski2015,
abstract = {An A-manifold is a manifold whose Ricci tensor is cyclic-parallel, equivalently it satisfies ∇XXRic(X,X) = 0. This condition generalizes the Einstein condition. We construct new examples of A-manifolds on r-torus bundles over a base which is a product of almost Hodge A-manifolds},
author = {Grzegorz Zborowski},
journal = {Annales UMCS, Mathematica},
keywords = {and phrases. A-manifold; cyclic parallel Ricci; torus bundle; Einstein-like manifold; Killing tensor; -manifold},
language = {eng},
number = {1},
pages = {109-119},
title = {A-manifolds on a principal torus bundle over an almost Hodge A-manifold base},
url = {http://eudml.org/doc/270911},
volume = {69},
year = {2015},
}

TY - JOUR
AU - Grzegorz Zborowski
TI - A-manifolds on a principal torus bundle over an almost Hodge A-manifold base
JO - Annales UMCS, Mathematica
PY - 2015
VL - 69
IS - 1
SP - 109
EP - 119
AB - An A-manifold is a manifold whose Ricci tensor is cyclic-parallel, equivalently it satisfies ∇XXRic(X,X) = 0. This condition generalizes the Einstein condition. We construct new examples of A-manifolds on r-torus bundles over a base which is a product of almost Hodge A-manifolds
LA - eng
KW - and phrases. A-manifold; cyclic parallel Ricci; torus bundle; Einstein-like manifold; Killing tensor; -manifold
UR - http://eudml.org/doc/270911
ER -

References

top
  1. [1] Besse, A., Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, 1987. 
  2. [2] Gray, A., Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280. Zbl0378.53018
  3. [3] Jelonek, W., On A-tensors in Riemannian geometry, preprint PAN 551, 1995. 
  4. [4] Jelonek, W., K-contact A-manifolds, Colloq. Math. 75 (1) (1998), 97-103. Zbl0893.53018
  5. [5] Jelonek, W., Almost K¨ahler A-structures on twistor bundles, Ann. Glob. Anal. Geom. 17 (1999), 329-339. Zbl0982.53045
  6. [6] Kobayashi, S., Principal fibre bundles with the 1-dimensional toroidal group, Tohoku Math. J. 8 (1956), 29-45. Zbl0075.32103
  7. [7] Moroianu, A., Semmelmann, U., Twistor forms on K¨ahler manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003), 823-845. Zbl1121.53050
  8. [8] O’Neill, B., The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. 
  9. [9] Pedersen, H., Todd, P., The Ledger curvature conditions and D’Atri geometry, Differential Geom. Appl. 11 (1999), 155-162. Zbl0944.53025
  10. [10] Sekigawa, K., Vanhecke, L., Symplectic geodesic symmetries on K¨ahler manifolds, Quart. J. Math. Oxford Ser. (2) 37 (1986), 95-103. Zbl0589.53068
  11. [11] Semmelmann, U., Conformal Killing forms on Riemannian manifolds, preprint, arXiv:math/0206117. 
  12. [12] Tang, Z., Yan, W., Isoparametric foliation and a problem of Besse on generalizations of Einstein condition, preprint, arXiv:math/1307.3807. 
  13. [13] Wang, M. Y., Ziller, W., Einstein metrics on torus bundles, J. Differential Geom. 31 (1990), 215-248. Zbl0691.53036
  14. [14] Zborowski, G., Construction of an A-manifold on a principal torus bundle, Ann. Univ. Paedagog. Crac. Stud. Math. 12 (2013), 5-19. Zbl1303.53059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.