A-manifolds on a principal torus bundle over an almost Hodge A-manifold base

Grzegorz Zborowski

Annales UMCS, Mathematica (2015)

  • Volume: 69, Issue: 1, page 109-119
  • ISSN: 2083-7402

Abstract

top
An A-manifold is a manifold whose Ricci tensor is cyclic-parallel, equivalently it satisfies ∇XXRic(X,X) = 0. This condition generalizes the Einstein condition. We construct new examples of A-manifolds on r-torus bundles over a base which is a product of almost Hodge A-manifolds

How to cite

top

Grzegorz Zborowski. "A-manifolds on a principal torus bundle over an almost Hodge A-manifold base." Annales UMCS, Mathematica 69.1 (2015): 109-119. <http://eudml.org/doc/270911>.

@article{GrzegorzZborowski2015,
abstract = {An A-manifold is a manifold whose Ricci tensor is cyclic-parallel, equivalently it satisfies ∇XXRic(X,X) = 0. This condition generalizes the Einstein condition. We construct new examples of A-manifolds on r-torus bundles over a base which is a product of almost Hodge A-manifolds},
author = {Grzegorz Zborowski},
journal = {Annales UMCS, Mathematica},
keywords = {and phrases. A-manifold; cyclic parallel Ricci; torus bundle; Einstein-like manifold; Killing tensor; -manifold},
language = {eng},
number = {1},
pages = {109-119},
title = {A-manifolds on a principal torus bundle over an almost Hodge A-manifold base},
url = {http://eudml.org/doc/270911},
volume = {69},
year = {2015},
}

TY - JOUR
AU - Grzegorz Zborowski
TI - A-manifolds on a principal torus bundle over an almost Hodge A-manifold base
JO - Annales UMCS, Mathematica
PY - 2015
VL - 69
IS - 1
SP - 109
EP - 119
AB - An A-manifold is a manifold whose Ricci tensor is cyclic-parallel, equivalently it satisfies ∇XXRic(X,X) = 0. This condition generalizes the Einstein condition. We construct new examples of A-manifolds on r-torus bundles over a base which is a product of almost Hodge A-manifolds
LA - eng
KW - and phrases. A-manifold; cyclic parallel Ricci; torus bundle; Einstein-like manifold; Killing tensor; -manifold
UR - http://eudml.org/doc/270911
ER -

References

top
  1. [1] Besse, A., Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, 1987. 
  2. [2] Gray, A., Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280. Zbl0378.53018
  3. [3] Jelonek, W., On A-tensors in Riemannian geometry, preprint PAN 551, 1995. 
  4. [4] Jelonek, W., K-contact A-manifolds, Colloq. Math. 75 (1) (1998), 97-103. Zbl0893.53018
  5. [5] Jelonek, W., Almost K¨ahler A-structures on twistor bundles, Ann. Glob. Anal. Geom. 17 (1999), 329-339. Zbl0982.53045
  6. [6] Kobayashi, S., Principal fibre bundles with the 1-dimensional toroidal group, Tohoku Math. J. 8 (1956), 29-45. Zbl0075.32103
  7. [7] Moroianu, A., Semmelmann, U., Twistor forms on K¨ahler manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003), 823-845. Zbl1121.53050
  8. [8] O’Neill, B., The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. 
  9. [9] Pedersen, H., Todd, P., The Ledger curvature conditions and D’Atri geometry, Differential Geom. Appl. 11 (1999), 155-162. Zbl0944.53025
  10. [10] Sekigawa, K., Vanhecke, L., Symplectic geodesic symmetries on K¨ahler manifolds, Quart. J. Math. Oxford Ser. (2) 37 (1986), 95-103. Zbl0589.53068
  11. [11] Semmelmann, U., Conformal Killing forms on Riemannian manifolds, preprint, arXiv:math/0206117. 
  12. [12] Tang, Z., Yan, W., Isoparametric foliation and a problem of Besse on generalizations of Einstein condition, preprint, arXiv:math/1307.3807. 
  13. [13] Wang, M. Y., Ziller, W., Einstein metrics on torus bundles, J. Differential Geom. 31 (1990), 215-248. Zbl0691.53036
  14. [14] Zborowski, G., Construction of an A-manifold on a principal torus bundle, Ann. Univ. Paedagog. Crac. Stud. Math. 12 (2013), 5-19. Zbl1303.53059

NotesEmbed ?

top

You must be logged in to post comments.