Twistor forms on Kähler manifolds
Andrei Moroianu; Uwe Semmelmann
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)
- Volume: 2, Issue: 4, page 823-845
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topMoroianu, Andrei, and Semmelmann, Uwe. "Twistor forms on Kähler manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.4 (2003): 823-845. <http://eudml.org/doc/84521>.
@article{Moroianu2003,
abstract = {Twistor forms are a natural generalization of conformal vector fields on riemannian manifolds. They are defined as sections in the kernel of a conformally invariant first order differential operator. We study twistor forms on compact Kähler manifolds and give a complete description up to special forms in the middle dimension. In particular, we show that they are closely related to hamiltonian 2-forms. This provides the first examples of compact Kähler manifolds with non–parallel twistor forms in any even degree.},
author = {Moroianu, Andrei, Semmelmann, Uwe},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {823-845},
publisher = {Scuola normale superiore},
title = {Twistor forms on Kähler manifolds},
url = {http://eudml.org/doc/84521},
volume = {2},
year = {2003},
}
TY - JOUR
AU - Moroianu, Andrei
AU - Semmelmann, Uwe
TI - Twistor forms on Kähler manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 4
SP - 823
EP - 845
AB - Twistor forms are a natural generalization of conformal vector fields on riemannian manifolds. They are defined as sections in the kernel of a conformally invariant first order differential operator. We study twistor forms on compact Kähler manifolds and give a complete description up to special forms in the middle dimension. In particular, we show that they are closely related to hamiltonian 2-forms. This provides the first examples of compact Kähler manifolds with non–parallel twistor forms in any even degree.
LA - eng
UR - http://eudml.org/doc/84521
ER -
References
top- [1] M. F. Atiyah – N. J. Hitchin – I. M. Singer, Self–duality in four dimensional Riemannian geometry, Proc. R. Soc. Lond. A362 (1978), 425–461. Zbl0389.53011MR506229
- [2] V. Apostolov, private communication.
- [3] V. Apostolov – D. Calderbank – P. Gauduchon, The geometry of weakly selfdual Kähler surfaces, Compositio Math. 135 (2003), 279–322. Zbl1031.53045MR1956815
- [4] V. Apostolov – D. Calderbank – P. Gauduchon, Hamiltonian 2–forms in Kähler geometry I, math.DG/0202280 (2002). Zbl1101.53041
- [5] C. Bär, Real Killing spinors and holonomy , Comm. Math. Phys. 154 (1993), 509–521. Zbl0778.53037MR1224089
- [6] H. Baum – Th. Friedrich – R. Grunewald – I. Kath, “Twistor and Killing Spinors on Riemannian Manifolds”, Teubner–Verlag, Stuttgart–Leipzig, 1991. Zbl0734.53003MR1164864
- [7] I. M. Benn – P. Charlton – J. Kress, Debye potentials for Maxwell and Dirac fields from a generalization of the Killing–Yano equation, J. Math. Phys. 38 (1997), 4504–4527. Zbl0885.53077MR1468648
- [8] I. M. Benn – P. Charlton, Dirac symmetry operators from conformal Killing-Yano tensors, Classical Quantum Gravity 14 (1997), 1037–1042. Zbl0879.58079MR1448285
- [9] A. Besse, “Einstein manifolds”, Springer–Verlag, New York 1987. Zbl0613.53001MR867684
- [10] T. Branson, Stein–Weiss operators and ellipticity, J. Functional Anal. 151 (1997), 334–383. Zbl0904.58054MR1491546
- [11] S. Gallot – D. Meyer, Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl. (9) 54 (1975), 259–284. Zbl0316.53036MR454884
- [12] J.-B. Jun – S. Ayabe – S. Yamaguchi, On the conformal Killing –form in compact Kaehlerian manifolds, Tensor (N.S.) 42 (1985), 258–271. Zbl0589.53067MR847045
- [13] T. Kashiwada, On conformal Killing tensor, Natur. Sci. Rep. Ochanomizu Univ. 19 (1968), 67–74. Zbl0179.26902MR243458
- [14] R. Penrose – M. Walker, On quadratic first integrals of the geodesic equations for type spacetimes, Comm. Math. Phys. 18 (1970) 265–274. Zbl0197.26404MR272351
- [15] U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z. 243 (2003), 503–527. Zbl1061.53033MR2021568
- [16] S. Tachibana, On Killing tensors in Riemannian manifolds of positive curvature operator, Tohoku Math. J. (2) 28 (1976), 177–184. Zbl0328.53032MR410604
- [17] S. Tachibana – T. Kashiwada, On the integrability of Killing–Yano’s equation, J. Math. Soc. Japan 21 (1969), 259–265. Zbl0174.53402MR239537
- [18] S. Tachibana, On conformal Killing tensor in a Riemannian space, Tohoku Math. J. (2) 21 (1969), 56–64. Zbl0182.55301MR242078
- [19] S. Yamaguchi, On a Killing –form in a compact Kählerian manifold, Tensor (N.S.) 29 (1975), 274–276. Zbl0305.53052MR377788
- [20] K. Yano, Some remarks on tensor fields and curvature, Ann. of Math. (2) 55 (1952), 328–347. Zbl0046.40002MR48892
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.