Twistor forms on Kähler manifolds

Andrei Moroianu; Uwe Semmelmann

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 4, page 823-845
  • ISSN: 0391-173X

Abstract

top
Twistor forms are a natural generalization of conformal vector fields on riemannian manifolds. They are defined as sections in the kernel of a conformally invariant first order differential operator. We study twistor forms on compact Kähler manifolds and give a complete description up to special forms in the middle dimension. In particular, we show that they are closely related to hamiltonian 2-forms. This provides the first examples of compact Kähler manifolds with non–parallel twistor forms in any even degree.

How to cite

top

Moroianu, Andrei, and Semmelmann, Uwe. "Twistor forms on Kähler manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.4 (2003): 823-845. <http://eudml.org/doc/84521>.

@article{Moroianu2003,
abstract = {Twistor forms are a natural generalization of conformal vector fields on riemannian manifolds. They are defined as sections in the kernel of a conformally invariant first order differential operator. We study twistor forms on compact Kähler manifolds and give a complete description up to special forms in the middle dimension. In particular, we show that they are closely related to hamiltonian 2-forms. This provides the first examples of compact Kähler manifolds with non–parallel twistor forms in any even degree.},
author = {Moroianu, Andrei, Semmelmann, Uwe},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {823-845},
publisher = {Scuola normale superiore},
title = {Twistor forms on Kähler manifolds},
url = {http://eudml.org/doc/84521},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Moroianu, Andrei
AU - Semmelmann, Uwe
TI - Twistor forms on Kähler manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 4
SP - 823
EP - 845
AB - Twistor forms are a natural generalization of conformal vector fields on riemannian manifolds. They are defined as sections in the kernel of a conformally invariant first order differential operator. We study twistor forms on compact Kähler manifolds and give a complete description up to special forms in the middle dimension. In particular, we show that they are closely related to hamiltonian 2-forms. This provides the first examples of compact Kähler manifolds with non–parallel twistor forms in any even degree.
LA - eng
UR - http://eudml.org/doc/84521
ER -

References

top
  1. [1] M. F. Atiyah – N. J. Hitchin – I. M. Singer, Self–duality in four dimensional Riemannian geometry, Proc. R. Soc. Lond. A362 (1978), 425–461. Zbl0389.53011MR506229
  2. [2] V. Apostolov, private communication. 
  3. [3] V. Apostolov – D. Calderbank – P. Gauduchon, The geometry of weakly selfdual Kähler surfaces, Compositio Math. 135 (2003), 279–322. Zbl1031.53045MR1956815
  4. [4] V. Apostolov – D. Calderbank – P. Gauduchon, Hamiltonian 2–forms in Kähler geometry I, math.DG/0202280 (2002). Zbl1101.53041
  5. [5] C. Bär, Real Killing spinors and holonomy , Comm. Math. Phys. 154 (1993), 509–521. Zbl0778.53037MR1224089
  6. [6] H. Baum – Th. Friedrich – R. Grunewald – I. Kath, “Twistor and Killing Spinors on Riemannian Manifolds”, Teubner–Verlag, Stuttgart–Leipzig, 1991. Zbl0734.53003MR1164864
  7. [7] I. M. Benn – P. Charlton – J. Kress, Debye potentials for Maxwell and Dirac fields from a generalization of the Killing–Yano equation, J. Math. Phys. 38 (1997), 4504–4527. Zbl0885.53077MR1468648
  8. [8] I. M. Benn – P. Charlton, Dirac symmetry operators from conformal Killing-Yano tensors, Classical Quantum Gravity 14 (1997), 1037–1042. Zbl0879.58079MR1448285
  9. [9] A. Besse, “Einstein manifolds”, Springer–Verlag, New York 1987. Zbl0613.53001MR867684
  10. [10] T. Branson, Stein–Weiss operators and ellipticity, J. Functional Anal. 151 (1997), 334–383. Zbl0904.58054MR1491546
  11. [11] S. Gallot – D. Meyer, Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl. (9) 54 (1975), 259–284. Zbl0316.53036MR454884
  12. [12] J.-B. Jun – S. Ayabe – S. Yamaguchi, On the conformal Killing p –form in compact Kaehlerian manifolds, Tensor (N.S.) 42 (1985), 258–271. Zbl0589.53067MR847045
  13. [13] T. Kashiwada, On conformal Killing tensor, Natur. Sci. Rep. Ochanomizu Univ. 19 (1968), 67–74. Zbl0179.26902MR243458
  14. [14] R. Penrose – M. Walker, On quadratic first integrals of the geodesic equations for type { 22 } spacetimes, Comm. Math. Phys. 18 (1970) 265–274. Zbl0197.26404MR272351
  15. [15] U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z. 243 (2003), 503–527. Zbl1061.53033MR2021568
  16. [16] S. Tachibana, On Killing tensors in Riemannian manifolds of positive curvature operator, Tohoku Math. J. (2) 28 (1976), 177–184. Zbl0328.53032MR410604
  17. [17] S. Tachibana – T. Kashiwada, On the integrability of Killing–Yano’s equation, J. Math. Soc. Japan 21 (1969), 259–265. Zbl0174.53402MR239537
  18. [18] S. Tachibana, On conformal Killing tensor in a Riemannian space, Tohoku Math. J. (2) 21 (1969), 56–64. Zbl0182.55301MR242078
  19. [19] S. Yamaguchi, On a Killing p –form in a compact Kählerian manifold, Tensor (N.S.) 29 (1975), 274–276. Zbl0305.53052MR377788
  20. [20] K. Yano, Some remarks on tensor fields and curvature, Ann. of Math. (2) 55 (1952), 328–347. Zbl0046.40002MR48892

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.