A new bound for the spectral radius of Brualdi-Li matrices

Xiaogen Chen

Special Matrices (2015)

  • Volume: 3, Issue: 1, page 118-122, electronic only
  • ISSN: 2300-7451

Abstract

top
Let B2m denote the Brualdi-Li matrix of order 2m, and let ρ2m = ρ(B2m ) denote the spectral radius of the Brualdi-Li Matrix. Then [...] . where m > 2, e = 2.71828 · · · , [...] and [...] .

How to cite

top

Xiaogen Chen. "A new bound for the spectral radius of Brualdi-Li matrices." Special Matrices 3.1 (2015): 118-122, electronic only. <http://eudml.org/doc/270914>.

@article{XiaogenChen2015,
abstract = {Let B2m denote the Brualdi-Li matrix of order 2m, and let ρ2m = ρ(B2m ) denote the spectral radius of the Brualdi-Li Matrix. Then [...] . where m > 2, e = 2.71828 · · · , [...] and [...] .},
author = {Xiaogen Chen},
journal = {Special Matrices},
keywords = {Brualdi-Li Matrix; Spectral Radius; Tournament Matrix; Brualdi-Li matrix; spectral radius; tournament matrix},
language = {eng},
number = {1},
pages = {118-122, electronic only},
title = {A new bound for the spectral radius of Brualdi-Li matrices},
url = {http://eudml.org/doc/270914},
volume = {3},
year = {2015},
}

TY - JOUR
AU - Xiaogen Chen
TI - A new bound for the spectral radius of Brualdi-Li matrices
JO - Special Matrices
PY - 2015
VL - 3
IS - 1
SP - 118
EP - 122, electronic only
AB - Let B2m denote the Brualdi-Li matrix of order 2m, and let ρ2m = ρ(B2m ) denote the spectral radius of the Brualdi-Li Matrix. Then [...] . where m > 2, e = 2.71828 · · · , [...] and [...] .
LA - eng
KW - Brualdi-Li Matrix; Spectral Radius; Tournament Matrix; Brualdi-Li matrix; spectral radius; tournament matrix
UR - http://eudml.org/doc/270914
ER -

References

top
  1. [1] S. Friedland, Eigenvalues of almost skew-symmetricmatrices and tournamentmatrices, in Combinatorial and Graph Theoretic Problems in Linear Algebra, IMA Vol. Math. Appl. 50(R.A. Brauldi, S. Friedland, and V. Klee, Eds.), Springer-Verlag, New York, (1993), 189–206. 
  2. [2] R.A. Brualdi and Q. Li, Problem 31, Discrete Math.43 (1983), 1133–1135. 
  3. [3] S.W. Drury, Solution of the Conjecture of Brualdi and Li, Linear Algebra Appl. 436 (2012), 3392–3399. [WoS] Zbl1241.05041
  4. [4] S. Kirkland, A note on the sequence of Brualdi-Li matrices, Linear Algebra Appl. 248 (1996), 233–240. Zbl0865.15014
  5. [5] X. Chen, A note the bound of spectral radius for Brualdi-Li matrices, Int. J. Appl. Math. Stat. 42 (2013), 491–498. 
  6. [6] S. Kirkland, A note on perron vectors for almost regular tournament matrices, Linear Algebra Appl. 266 (1997), 43–47. Zbl0901.15011
  7. [7] S. Kirkland, Hypertournament matrices, score vectors and eigenvalues, Linear Multilinear Algebra 30 (1991), 261–274. [WoS] Zbl0751.15009
  8. [8] S. Kirkland, An upper bound on the Perron value of an almost regular tournament matrix, Linear Algebra Appl. 361 (2003), 7–22. Zbl1019.15004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.