A new bound for the spectral radius of Brualdi-Li matrices
Special Matrices (2015)
- Volume: 3, Issue: 1, page 118-122, electronic only
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S. Friedland, Eigenvalues of almost skew-symmetricmatrices and tournamentmatrices, in Combinatorial and Graph Theoretic Problems in Linear Algebra, IMA Vol. Math. Appl. 50(R.A. Brauldi, S. Friedland, and V. Klee, Eds.), Springer-Verlag, New York, (1993), 189–206.
- [2] R.A. Brualdi and Q. Li, Problem 31, Discrete Math.43 (1983), 1133–1135.
- [3] S.W. Drury, Solution of the Conjecture of Brualdi and Li, Linear Algebra Appl. 436 (2012), 3392–3399. [WoS] Zbl1241.05041
- [4] S. Kirkland, A note on the sequence of Brualdi-Li matrices, Linear Algebra Appl. 248 (1996), 233–240. Zbl0865.15014
- [5] X. Chen, A note the bound of spectral radius for Brualdi-Li matrices, Int. J. Appl. Math. Stat. 42 (2013), 491–498.
- [6] S. Kirkland, A note on perron vectors for almost regular tournament matrices, Linear Algebra Appl. 266 (1997), 43–47. Zbl0901.15011
- [7] S. Kirkland, Hypertournament matrices, score vectors and eigenvalues, Linear Multilinear Algebra 30 (1991), 261–274. [WoS] Zbl0751.15009
- [8] S. Kirkland, An upper bound on the Perron value of an almost regular tournament matrix, Linear Algebra Appl. 361 (2003), 7–22. Zbl1019.15004