A new bound for the spectral radius of Brualdi-Li matrices

Xiaogen Chen

Special Matrices (2015)

  • Volume: 3, Issue: 1, page 118-122, electronic only
  • ISSN: 2300-7451

Abstract

top
Let B2m denote the Brualdi-Li matrix of order 2m, and let ρ2m = ρ(B2m ) denote the spectral radius of the Brualdi-Li Matrix. Then [...] . where m > 2, e = 2.71828 · · · , [...] and [...] .

How to cite

top

Xiaogen Chen. "A new bound for the spectral radius of Brualdi-Li matrices." Special Matrices 3.1 (2015): 118-122, electronic only. <http://eudml.org/doc/270914>.

@article{XiaogenChen2015,
abstract = {Let B2m denote the Brualdi-Li matrix of order 2m, and let ρ2m = ρ(B2m ) denote the spectral radius of the Brualdi-Li Matrix. Then [...] . where m > 2, e = 2.71828 · · · , [...] and [...] .},
author = {Xiaogen Chen},
journal = {Special Matrices},
keywords = {Brualdi-Li Matrix; Spectral Radius; Tournament Matrix; Brualdi-Li matrix; spectral radius; tournament matrix},
language = {eng},
number = {1},
pages = {118-122, electronic only},
title = {A new bound for the spectral radius of Brualdi-Li matrices},
url = {http://eudml.org/doc/270914},
volume = {3},
year = {2015},
}

TY - JOUR
AU - Xiaogen Chen
TI - A new bound for the spectral radius of Brualdi-Li matrices
JO - Special Matrices
PY - 2015
VL - 3
IS - 1
SP - 118
EP - 122, electronic only
AB - Let B2m denote the Brualdi-Li matrix of order 2m, and let ρ2m = ρ(B2m ) denote the spectral radius of the Brualdi-Li Matrix. Then [...] . where m > 2, e = 2.71828 · · · , [...] and [...] .
LA - eng
KW - Brualdi-Li Matrix; Spectral Radius; Tournament Matrix; Brualdi-Li matrix; spectral radius; tournament matrix
UR - http://eudml.org/doc/270914
ER -

References

top
  1. [1] S. Friedland, Eigenvalues of almost skew-symmetricmatrices and tournamentmatrices, in Combinatorial and Graph Theoretic Problems in Linear Algebra, IMA Vol. Math. Appl. 50(R.A. Brauldi, S. Friedland, and V. Klee, Eds.), Springer-Verlag, New York, (1993), 189–206. 
  2. [2] R.A. Brualdi and Q. Li, Problem 31, Discrete Math.43 (1983), 1133–1135. 
  3. [3] S.W. Drury, Solution of the Conjecture of Brualdi and Li, Linear Algebra Appl. 436 (2012), 3392–3399. [WoS] Zbl1241.05041
  4. [4] S. Kirkland, A note on the sequence of Brualdi-Li matrices, Linear Algebra Appl. 248 (1996), 233–240. Zbl0865.15014
  5. [5] X. Chen, A note the bound of spectral radius for Brualdi-Li matrices, Int. J. Appl. Math. Stat. 42 (2013), 491–498. 
  6. [6] S. Kirkland, A note on perron vectors for almost regular tournament matrices, Linear Algebra Appl. 266 (1997), 43–47. Zbl0901.15011
  7. [7] S. Kirkland, Hypertournament matrices, score vectors and eigenvalues, Linear Multilinear Algebra 30 (1991), 261–274. [WoS] Zbl0751.15009
  8. [8] S. Kirkland, An upper bound on the Perron value of an almost regular tournament matrix, Linear Algebra Appl. 361 (2003), 7–22. Zbl1019.15004

NotesEmbed ?

top

You must be logged in to post comments.