Displaying similar documents to “A new bound for the spectral radius of Brualdi-Li matrices”

On the spectral and Frobenius norm of a generalized Fibonacci r-circulant matrix

Jorma K. Merikoski, Pentti Haukkanen, Mika Mattila, Timo Tossavainen (2018)

Special Matrices

Similarity:

Consider the recursion g0 = a, g1 = b, gn = gn−1 + gn−2, n = 2, 3, . . . . We compute the Frobenius norm of the r-circulant matrix corresponding to g0, . . . , gn−1. We also give three lower bounds (with equality conditions) for the spectral norm of this matrix. For this purpose, we present three ways to estimate the spectral norm from below in general.

The Direct and Inverse Spectral Problems for some Banded Matrices

Zagorodnyuk, S. M. (2011)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 15A29. In this paper we introduced a notion of the generalized spectral function for a matrix J = (gk,l)k,l = 0 Ґ, gk,l О C, such that gk,l = 0, if |k-l | > N; gk,k+N = 1, and gk,k-N № 0. Here N is a fixed positive integer. The direct and inverse spectral problems for such matrices are stated and solved. An integral representation for the generalized spectral function is obtained.

A sharp upper bound for the spectral radius of a nonnegative matrix and applications

Lihua You, Yujie Shu, Xiao-Dong Zhang (2016)

Czechoslovak Mathematical Journal

Similarity:

We obtain a sharp upper bound for the spectral radius of a nonnegative matrix. This result is used to present upper bounds for the adjacency spectral radius, the Laplacian spectral radius, the signless Laplacian spectral radius, the distance spectral radius, the distance Laplacian spectral radius, the distance signless Laplacian spectral radius of an undirected graph or a digraph. These results are new or generalize some known results.

The minimum, diagonal element of a positive matrix

M. Smyth, T. West (1998)

Studia Mathematica

Similarity:

Properties of the minimum diagonal element of a positive matrix are exploited to obtain new bounds on the eigenvalues thus exhibiting a spectral bias along the positive real axis familiar in Perron-Frobenius theory.

On the spectral Nevanlinna-Pick problem

Constantin Costara (2005)

Studia Mathematica

Similarity:

We give several characterizations of the symmetrized n-disc Gₙ which generalize to the case n ≥ 3 the characterizations of the symmetrized bidisc that were used in order to solve the two-point spectral Nevanlinna-Pick problem in ℳ ₂(ℂ). Using these characterizations of the symmetrized n-disc, which give necessary and sufficient conditions for an element to belong to Gₙ, we obtain necessary conditions of interpolation for the general spectral Nevanlinna-Pick problem. They also allow us...