On multiset colorings of graphs

Futaba Okamoto; Ebrahim Salehi; Ping Zhang

Discussiones Mathematicae Graph Theory (2010)

  • Volume: 30, Issue: 1, page 137-153
  • ISSN: 2083-5892

Abstract

top
A vertex coloring of a graph G is a multiset coloring if the multisets of colors of the neighbors of every two adjacent vertices are different. The minimum k for which G has a multiset k-coloring is the multiset chromatic number χₘ(G) of G. For every graph G, χₘ(G) is bounded above by its chromatic number χ(G). The multiset chromatic numbers of regular graphs are investigated. It is shown that for every pair k, r of integers with 2 ≤ k ≤ r - 1, there exists an r-regular graph with multiset chromatic number k. It is also shown that for every positive integer N, there is an r-regular graph G such that χ(G) - χₘ(G) = N. In particular, it is shown that χₘ(Kₙ × K₂) is asymptotically √n. In fact, χ ( K × K ) = χ ( c o r ( K n + 1 ) ) . The corona cor(G) of a graph G is the graph obtained from G by adding, for each vertex v in G, a new vertex v’ and the edge vv’. It is shown that χₘ(cor(G)) ≤ χₘ(G) for every nontrivial connected graph G. The multiset chromatic numbers of the corona of all complete graphs are determined. On Multiset Colorings of Graphs From this, it follows that for every positive integer N, there exists a graph G such that χₘ(G) - χₘ(cor(G)) ≥ N. The result obtained on the multiset chromatic number of the corona of complete graphs is then extended to the corona of all regular complete multipartite graphs.

How to cite

top

Futaba Okamoto, Ebrahim Salehi, and Ping Zhang. "On multiset colorings of graphs." Discussiones Mathematicae Graph Theory 30.1 (2010): 137-153. <http://eudml.org/doc/270936>.

@article{FutabaOkamoto2010,
abstract = {A vertex coloring of a graph G is a multiset coloring if the multisets of colors of the neighbors of every two adjacent vertices are different. The minimum k for which G has a multiset k-coloring is the multiset chromatic number χₘ(G) of G. For every graph G, χₘ(G) is bounded above by its chromatic number χ(G). The multiset chromatic numbers of regular graphs are investigated. It is shown that for every pair k, r of integers with 2 ≤ k ≤ r - 1, there exists an r-regular graph with multiset chromatic number k. It is also shown that for every positive integer N, there is an r-regular graph G such that χ(G) - χₘ(G) = N. In particular, it is shown that χₘ(Kₙ × K₂) is asymptotically √n. In fact, $χₘ(Kₙ × K₂) = χₘ(cor(K_\{n+1\}))$. The corona cor(G) of a graph G is the graph obtained from G by adding, for each vertex v in G, a new vertex v’ and the edge vv’. It is shown that χₘ(cor(G)) ≤ χₘ(G) for every nontrivial connected graph G. The multiset chromatic numbers of the corona of all complete graphs are determined. On Multiset Colorings of Graphs From this, it follows that for every positive integer N, there exists a graph G such that χₘ(G) - χₘ(cor(G)) ≥ N. The result obtained on the multiset chromatic number of the corona of complete graphs is then extended to the corona of all regular complete multipartite graphs.},
author = {Futaba Okamoto, Ebrahim Salehi, Ping Zhang},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {vertex coloring; multiset coloring; neighbor-distinguishing coloring; neighbor-distinguishing},
language = {eng},
number = {1},
pages = {137-153},
title = {On multiset colorings of graphs},
url = {http://eudml.org/doc/270936},
volume = {30},
year = {2010},
}

TY - JOUR
AU - Futaba Okamoto
AU - Ebrahim Salehi
AU - Ping Zhang
TI - On multiset colorings of graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2010
VL - 30
IS - 1
SP - 137
EP - 153
AB - A vertex coloring of a graph G is a multiset coloring if the multisets of colors of the neighbors of every two adjacent vertices are different. The minimum k for which G has a multiset k-coloring is the multiset chromatic number χₘ(G) of G. For every graph G, χₘ(G) is bounded above by its chromatic number χ(G). The multiset chromatic numbers of regular graphs are investigated. It is shown that for every pair k, r of integers with 2 ≤ k ≤ r - 1, there exists an r-regular graph with multiset chromatic number k. It is also shown that for every positive integer N, there is an r-regular graph G such that χ(G) - χₘ(G) = N. In particular, it is shown that χₘ(Kₙ × K₂) is asymptotically √n. In fact, $χₘ(Kₙ × K₂) = χₘ(cor(K_{n+1}))$. The corona cor(G) of a graph G is the graph obtained from G by adding, for each vertex v in G, a new vertex v’ and the edge vv’. It is shown that χₘ(cor(G)) ≤ χₘ(G) for every nontrivial connected graph G. The multiset chromatic numbers of the corona of all complete graphs are determined. On Multiset Colorings of Graphs From this, it follows that for every positive integer N, there exists a graph G such that χₘ(G) - χₘ(cor(G)) ≥ N. The result obtained on the multiset chromatic number of the corona of complete graphs is then extended to the corona of all regular complete multipartite graphs.
LA - eng
KW - vertex coloring; multiset coloring; neighbor-distinguishing coloring; neighbor-distinguishing
UR - http://eudml.org/doc/270936
ER -

References

top
  1. [1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory (B) 94 (2005) 237-244, doi: 10.1016/j.jctb.2005.01.001. Zbl1074.05031
  2. [2] M. Anderson, C. Barrientos, R.C. Brigham, J.R. Carrington, M. Kronman, R.P. Vitray and J. Yellen, Irregular colorings of some graph classes, Bull. Inst. Combin. Appl., to appear. Zbl1177.05035
  3. [3] R.L. Brooks, On coloring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X. Zbl0027.26403
  4. [4] A.C. Burris, On graphs with irregular coloring number 2, Congr. Numer. 100 (1994) 129-140. Zbl0836.05029
  5. [5] G. Chartrand, H. Escuadro, F. Okamoto and P. Zhang, Detectable colorings of graphs, Util. Math. 69 (2006) 13-32. Zbl1102.05020
  6. [6] G. Chartrand, L. Lesniak, D.W. VanderJagt and P. Zhang, Recognizable colorings of graphs, Discuss. Math. Graph Theory 28 (2008) 35-57, doi: 10.7151/dmgt.1390. Zbl1235.05049
  7. [7] G. Chartrand, F. Okamoto, E. Salehi and P. Zhang, The multiset chromatic number of a graph, Math. Bohem. 134 (2009) 191-209. Zbl1212.05071
  8. [8] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman & Hall/CRC Press, Boca Raton, FL, 2009). Zbl1169.05001
  9. [9] H. Escuadro, F. Okamoto and P. Zhang, A three-color problem in graph theory, Bull. Inst. Combin. Appl. 52 (2008) 65-82. Zbl1146.05022
  10. [10] M. Karoński, T. Łuczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory (B) 91 (2004) 151-157, doi: 10.1016/j.jctb.2003.12.001. Zbl1042.05045
  11. [11] M. Radcliffe and P. Zhang, Irregular colorings of graphs, Bull. Inst. Combin. Appl. 49 (2007) 41-59. Zbl1119.05047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.