On multiset colorings of generalized corona graphs
Mathematica Bohemica (2016)
- Volume: 141, Issue: 4, page 431-455
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topFeng, Yun, and Lin, Wensong. "On multiset colorings of generalized corona graphs." Mathematica Bohemica 141.4 (2016): 431-455. <http://eudml.org/doc/287555>.
@article{Feng2016,
abstract = {A vertex $k$-coloring of a graph $G$ is a multiset $k$-coloring if $M(u)\ne M(v)$ for every edge $uv\in E(G)$, where $M(u)$ and $M(v)$ denote the multisets of colors of the neighbors of $u$ and $v$, respectively. The minimum $k$ for which $G$ has a multiset $k$-coloring is the multiset chromatic number$\chi _\{m\}(G)$ of $G$. For an integer $\ell \ge 0$, the $\ell $-corona of a graph $G$, $\{\rm cor\}^\{\ell \}(G)$, is the graph obtained from $G$ by adding, for each vertex $v$ in $G$, $\ell $ new neighbors which are end-vertices. In this paper, the multiset chromatic numbers are determined for $\ell $-coronas of all complete graphs, the regular complete multipartite graphs and the Cartesian product $K_\{r\}\square K_2$ of $K_r$ and $K_2$. In addition, we show that the minimum $\ell $ such that $\chi _\{m\}(\{\rm cor\}^\{\ell \}(G))=2$ never exceeds $\chi (G)-2$, where $G$ is a regular graph and $\chi (G)$ is the chromatic number of $G$.},
author = {Feng, Yun, Lin, Wensong},
journal = {Mathematica Bohemica},
keywords = {multiset coloring; multiset chromatic number; generalized corona of a graph; neighbor-distinguishing coloring},
language = {eng},
number = {4},
pages = {431-455},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On multiset colorings of generalized corona graphs},
url = {http://eudml.org/doc/287555},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Feng, Yun
AU - Lin, Wensong
TI - On multiset colorings of generalized corona graphs
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 4
SP - 431
EP - 455
AB - A vertex $k$-coloring of a graph $G$ is a multiset $k$-coloring if $M(u)\ne M(v)$ for every edge $uv\in E(G)$, where $M(u)$ and $M(v)$ denote the multisets of colors of the neighbors of $u$ and $v$, respectively. The minimum $k$ for which $G$ has a multiset $k$-coloring is the multiset chromatic number$\chi _{m}(G)$ of $G$. For an integer $\ell \ge 0$, the $\ell $-corona of a graph $G$, ${\rm cor}^{\ell }(G)$, is the graph obtained from $G$ by adding, for each vertex $v$ in $G$, $\ell $ new neighbors which are end-vertices. In this paper, the multiset chromatic numbers are determined for $\ell $-coronas of all complete graphs, the regular complete multipartite graphs and the Cartesian product $K_{r}\square K_2$ of $K_r$ and $K_2$. In addition, we show that the minimum $\ell $ such that $\chi _{m}({\rm cor}^{\ell }(G))=2$ never exceeds $\chi (G)-2$, where $G$ is a regular graph and $\chi (G)$ is the chromatic number of $G$.
LA - eng
KW - multiset coloring; multiset chromatic number; generalized corona of a graph; neighbor-distinguishing coloring
UR - http://eudml.org/doc/287555
ER -
References
top- Addario-Berry, L., Aldred, R. E. L., Dalal, K., Reed, B. A., 10.1016/j.jctb.2005.01.001, J. Comb. Theory, Ser. B 94 (2005), 237-244. (2005) Zbl1074.05031MR2145514DOI10.1016/j.jctb.2005.01.001
- Baril, J.-L., Togni, O., 10.1016/j.disc.2009.04.003, Discrete Math. 309 (2009), 5147-5157. (2009) Zbl1179.05041MR2548916DOI10.1016/j.disc.2009.04.003
- Burris, A. C., Schelp, R. H., 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C, J. Graph Theory 26 (1997), 73-82. (1997) Zbl0886.05068MR1469354DOI10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C
- Chartrand, G., Lesniak, L., VanderJagt, D. W., Zhang, P., 10.7151/dmgt.1390, Discuss. Math., Graph Theory 28 (2008), 35-57. (2008) Zbl1235.05049MR2438039DOI10.7151/dmgt.1390
- Chartrand, G., Okamoto, F., Salehi, E., Zhang, P., The multiset chromatic number of a graph, Math. Bohem. 134 (2009), 191-209. (2009) Zbl1212.05071MR2535147
- Feng, Y., Lin, W., 10.1016/j.ipl.2012.06.004, Inf. Process. Lett. 112 (2012), 678-682. (2012) Zbl1248.05064MR2944394DOI10.1016/j.ipl.2012.06.004
- Karoński, M., Łuczak, T., Thomason, A., 10.1016/j.jctb.2003.12.001, J. Comb. Theory, Ser. B 91 (2004), 151-157. (2004) Zbl1042.05045MR2047539DOI10.1016/j.jctb.2003.12.001
- Okamoto, F., Salehi, E., Zhang, P., 10.7151/dmgt.1483, Discuss. Math., Graph Theory 30 (2010), 137-153. (2010) Zbl1214.05030MR2676069DOI10.7151/dmgt.1483
- Radcliffe, M., Zhang, P., Irregular colorings of graphs, Bull. Inst. Comb. Appl. 49 (2007), 41-59. (2007) Zbl1119.05047MR2285522
- Zhang, Z., Chen, X., Li, J., Yao, B., Lu, X., Wang, J., 10.1360/03YS0207, Sci. China, Ser. A 48 (2005), 289-299. (2005) Zbl1080.05036MR2158269DOI10.1360/03YS0207
- Zhang, Z., Liu, L., Wang, J., 10.1016/S0893-9659(02)80015-5, Appl. Math. Lett. 15 (2002), 623-626. (2002) Zbl1008.05050MR1889513DOI10.1016/S0893-9659(02)80015-5
- Zhang, Z., Qiu, P., Xu, B., Li, J., Chen, X., Yao, B., Vertex-distinguishing total coloring of graphs, Ars Comb. 87 (2008), 33-45. (2008) Zbl1224.05203MR2414004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.