# Decompositions of nearly complete digraphs into t isomorphic parts

Mariusz Meszka; Zdzisław Skupień

Discussiones Mathematicae Graph Theory (2009)

- Volume: 29, Issue: 3, page 563-572
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topMariusz Meszka, and Zdzisław Skupień. "Decompositions of nearly complete digraphs into t isomorphic parts." Discussiones Mathematicae Graph Theory 29.3 (2009): 563-572. <http://eudml.org/doc/270948>.

@article{MariuszMeszka2009,

abstract = {An arc decomposition of the complete digraph Kₙ into t isomorphic subdigraphs is generalized to the case where the numerical divisibility condition is not satisfied. Two sets of nearly tth parts are constructively proved to be nonempty. These are the floor tth class ( Kₙ-R)/t and the ceiling tth class ( Kₙ+S)/t, where R and S comprise (possibly copies of) arcs whose number is the smallest possible. The existence of cyclically 1-generated decompositions of Kₙ into cycles $^\{→\}C_\{n-1\}$ and into paths $^\{→\}Pₙ$ is characterized.},

author = {Mariusz Meszka, Zdzisław Skupień},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {decomposition; cyclically 1-generated; remainder; surplus; universal part},

language = {eng},

number = {3},

pages = {563-572},

title = {Decompositions of nearly complete digraphs into t isomorphic parts},

url = {http://eudml.org/doc/270948},

volume = {29},

year = {2009},

}

TY - JOUR

AU - Mariusz Meszka

AU - Zdzisław Skupień

TI - Decompositions of nearly complete digraphs into t isomorphic parts

JO - Discussiones Mathematicae Graph Theory

PY - 2009

VL - 29

IS - 3

SP - 563

EP - 572

AB - An arc decomposition of the complete digraph Kₙ into t isomorphic subdigraphs is generalized to the case where the numerical divisibility condition is not satisfied. Two sets of nearly tth parts are constructively proved to be nonempty. These are the floor tth class ( Kₙ-R)/t and the ceiling tth class ( Kₙ+S)/t, where R and S comprise (possibly copies of) arcs whose number is the smallest possible. The existence of cyclically 1-generated decompositions of Kₙ into cycles $^{→}C_{n-1}$ and into paths $^{→}Pₙ$ is characterized.

LA - eng

KW - decomposition; cyclically 1-generated; remainder; surplus; universal part

UR - http://eudml.org/doc/270948

ER -

## References

top- [1] B. Alspach, H. Gavlas, M. Sajna and H. Verrall, Cycle decopositions IV: complete directed graphs and fixed length directed cycles, J. Combin. Theory (A) 103 (2003) 165-208, doi: 10.1016/S0097-3165(03)00098-0. Zbl1022.05061
- [2] C. Berge, Graphs and Hypergraphs (North-Holland, 1973).
- [3] J.C. Bermond and V. Faber, Decomposition of the complete directed graph into k-circuits, J. Combin. Theory (B) 21 (1976) 146-155, doi: 10.1016/0095-8956(76)90055-1. Zbl0344.05123
- [4] J. Bosák, Decompositions of Graphs (Dordrecht, Kluwer, 1990, [Slovak:] Bratislava, Veda, 1986).
- [5] G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman & Hall, 1996). Zbl0890.05001
- [6] A. Fortuna and Z. Skupień, On nearly third parts of complete digraphs and complete 2-graphs, manuscript. Zbl1276.05077
- [7] F. Harary and R.W. Robinson, Isomorphic factorizations X: Unsolved problems, J. Graph Theory 9 (1985) 67-86, doi: 10.1002/jgt.3190090105. Zbl0617.05051
- [8] F. Harary, R.W. Robinson and N.C. Wormald, Isomorphic factorisation V: Directed graphs, Mathematika 25 (1978) 279-285, doi: 10.1112/S0025579300009529. Zbl0387.05015
- [9] A. Kedzior and Z. Skupień, Universal sixth parts of a complete graph exist, manuscript.
- [10] E. Lucas, Récréations Mathématiques, vol. II (Paris, Gauthier-Villars, 1883).
- [11] M. Meszka and Z. Skupień, Self-converse and oriented graphs among the third parts of nearly complete digraphs, Combinatorica 18 (1998) 413-424, doi: 10.1007/PL00009830. Zbl0924.05052
- [12] M. Meszka and Z. Skupień, On some third parts of nearly complete digraphs, Discrete Math. 212 (2000) 129-139, doi: 10.1016/S0012-365X(99)00214-9. Zbl0940.05054
- [13] M. Meszka and Z. Skupień, Decompositions of a complete multidigraph into nonhamiltonian paths, J. Graph Theory 51 (2006) 82-91, doi: 10.1002/jgt.20122. Zbl1084.05054
- [14] M. Plantholt, The chromatic index of graphs with a spanning star, J. Graph Theory 5 (1981) 45-53, doi: 10.1002/jgt.3190050103. Zbl0448.05031
- [15] R.C. Read, On the number of self-complementary graphs and digraphs, J. London Math. Soc. 38 (1963) 99-104, doi: 10.1112/jlms/s1-38.1.99. Zbl0116.15001
- [16] Z. Skupień, The complete graph t-packings and t-coverings, Graphs Combin. 9 (1993) 353-363, doi: 10.1007/BF02988322. Zbl0795.05116
- [17] Z. Skupień, Clique parts independent of remainders, Discuss. Math. Graph Theory 22 (2002) 361, doi: 10.7151/dmgt.1181. Zbl1028.05077
- [18] Z. Skupień, Universal fractional parts of a complete graph, manuscript.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.