On Ramsey -minimal graphs
Tomás Vetrík; Lyra Yulianti; Edy Tri Baskoro
Discussiones Mathematicae Graph Theory (2010)
- Volume: 30, Issue: 4, page 637-649
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topTomás Vetrík, Lyra Yulianti, and Edy Tri Baskoro. "On Ramsey $(K_{1,2},C₄)$-minimal graphs." Discussiones Mathematicae Graph Theory 30.4 (2010): 637-649. <http://eudml.org/doc/270986>.
@article{TomásVetrík2010,
abstract = {For graphs F, G and H, we write F → (G,H) to mean that any red-blue coloring of the edges of F contains a red copy of G or a blue copy of H. The graph F is Ramsey (G,H)-minimal if F → (G,H) but F* ↛ (G,H) for any proper subgraph F* ⊂ F. We present an infinite family of Ramsey $(K_\{1,2\},C₄)$-minimal graphs of any diameter ≥ 4.},
author = {Tomás Vetrík, Lyra Yulianti, Edy Tri Baskoro},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {Ramsey-minimal graph; edge coloring; diameter of a graph},
language = {eng},
number = {4},
pages = {637-649},
title = {On Ramsey $(K_\{1,2\},C₄)$-minimal graphs},
url = {http://eudml.org/doc/270986},
volume = {30},
year = {2010},
}
TY - JOUR
AU - Tomás Vetrík
AU - Lyra Yulianti
AU - Edy Tri Baskoro
TI - On Ramsey $(K_{1,2},C₄)$-minimal graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2010
VL - 30
IS - 4
SP - 637
EP - 649
AB - For graphs F, G and H, we write F → (G,H) to mean that any red-blue coloring of the edges of F contains a red copy of G or a blue copy of H. The graph F is Ramsey (G,H)-minimal if F → (G,H) but F* ↛ (G,H) for any proper subgraph F* ⊂ F. We present an infinite family of Ramsey $(K_{1,2},C₄)$-minimal graphs of any diameter ≥ 4.
LA - eng
KW - Ramsey-minimal graph; edge coloring; diameter of a graph
UR - http://eudml.org/doc/270986
ER -
References
top- [1] E.T. Baskoro, L. Yulianti and H. Assiyatun, Ramsey -minimal graphs, J. Combin. Mathematics and Combin. Computing 65 (2008) 79-90. Zbl1170.05044
- [2] M. Borowiecki, M. Hałuszczak and E. Sidorowicz, On Ramsey-minimal graphs, Discrete Math. 286 (2004) 37-43, doi: 10.1016/j.disc.2003.11.043. Zbl1061.05062
- [3] M. Borowiecki, I. Schiermeyer and E. Sidorowicz, Ramsey -minimal graphs, Electronic J. Combinatorics 12 (2005) R20.
- [4] S.A. Burr, P. Erdös, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Ramsey-minimal graphs for star-forests, Discrete Math. 33 (1981) 227-237, doi: 10.1016/0012-365X(81)90266-1. Zbl0456.05046
- [5] S.A. Burr, P. Erdös and L. Lovász, On graphs of Ramsey type, Ars Combin. 1 (1976) 167-190. Zbl0333.05120
- [6] T. Łuczak, On Ramsey-minimal graphs, Electronic J. Combinatorics 1 (1994) #R4. Zbl0814.05058
- [7] I. Mengersen and J. Oeckermann, Matching-star Ramsey sets, Discrete Appl. Math. 95 (1999) 417-424, doi: 10.1016/S0166-218X(99)00089-X. Zbl0932.05063
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.