# Components with the expected codimension in the moduli scheme of stable spin curves

Annales UMCS, Mathematica (2015)

- Volume: 69, Issue: 1, page 1-4
- ISSN: 2083-7402

## Access Full Article

top## Abstract

top## How to cite

topEdoardo Ballico. "Components with the expected codimension in the moduli scheme of stable spin curves." Annales UMCS, Mathematica 69.1 (2015): 1-4. <http://eudml.org/doc/270993>.

@article{EdoardoBallico2015,

abstract = {Here we study the Brill-Noether theory of “extremal” Cornalba’s theta-characteristics on stable curves C of genus g, where “extremal” means that they are line bundles on a quasi-stable model of C with #(Sing(C)) exceptional components},

author = {Edoardo Ballico},

journal = {Annales UMCS, Mathematica},

keywords = {and phrases. Stable curve; theta-characteristic; spin curve; Brill-Noether theory.; stable curve; Brill-Noether theory},

language = {eng},

number = {1},

pages = {1-4},

title = {Components with the expected codimension in the moduli scheme of stable spin curves},

url = {http://eudml.org/doc/270993},

volume = {69},

year = {2015},

}

TY - JOUR

AU - Edoardo Ballico

TI - Components with the expected codimension in the moduli scheme of stable spin curves

JO - Annales UMCS, Mathematica

PY - 2015

VL - 69

IS - 1

SP - 1

EP - 4

AB - Here we study the Brill-Noether theory of “extremal” Cornalba’s theta-characteristics on stable curves C of genus g, where “extremal” means that they are line bundles on a quasi-stable model of C with #(Sing(C)) exceptional components

LA - eng

KW - and phrases. Stable curve; theta-characteristic; spin curve; Brill-Noether theory.; stable curve; Brill-Noether theory

UR - http://eudml.org/doc/270993

ER -

## References

top- [1] Arbarello, E., Cornalba, M., Griffiths, P. A., Geometry of Algebraic Curves. Vol. II, Springer, Berlin, 2011. Zbl1235.14002
- [2] Ballico, E., Sections of theta-characteristics on stable curves, Int. J. Pure Appl. Math. 54, No. 3 (2009), 335-340. Zbl1177.14054
- [3] Benzo, L., Components of moduli spaces of spin curves with the expected codimension, Mathematische Annalen (2015), DOI 10.1007/s00208-015-1171-6, arXiv:1307.6954. Zbl1329.14059
- [4] Caporaso, L., A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc. 7, No. 3 (1994), 589-660. Zbl0827.14014
- [5] Cornalba, M., Moduli of curves and theta-characteristics. Lectures on Riemann surfaces (Trieste, 1987), World Sci. Publ., Teaneck, NJ, 1989, 560-589.
- [6] Farkas, G., Gaussian maps, Gieseker-Petri loci and large theta-characteristics, J. Reine Angew. Math. 581 (2005), 151-173. Zbl1076.14035
- [7] Fontanari, C., On the geometry of moduli of curves and line bundles, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16, No. 1 (2005), 45-59. Zbl1222.14055
- [8] Harris, J., Theta-characteristics on algebraic curves, Trans. Amer. Math. Soc. 271 (1982), 611-638. Zbl0513.14025
- [9] Jarvis, T. J., Torsion-free sheaves and moduli of generalized spin curves, Compositio Math. 110, No. 3 (1998), 291-333. Zbl0912.14010

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.