On the geometry of moduli of curves and line bundles

Claudio Fontanari

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2005)

  • Volume: 16, Issue: 1, page 45-59
  • ISSN: 1120-6330

Abstract

top
Here we focus on the geometry of P ¯ d , g , the compactification of the universal Picard variety constructed by L. Caporaso. In particular, we show that the moduli space of spin curves constructed by M. Cornalba naturally injects into P ¯ d , g and we give generators and relations of the rational Picard group of P ¯ d , g , extending previous work by A. Kouvidakis.

How to cite

top

Fontanari, Claudio. "On the geometry of moduli of curves and line bundles." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.1 (2005): 45-59. <http://eudml.org/doc/252379>.

@article{Fontanari2005,
abstract = {Here we focus on the geometry of $\overline\{P\}_\{d,g\}$, the compactification of the universal Picard variety constructed by L. Caporaso. In particular, we show that the moduli space of spin curves constructed by M. Cornalba naturally injects into $\overline\{P\}_\{d,g\}$ and we give generators and relations of the rational Picard group of $\overline\{P\}_\{d,g\}$, extending previous work by A. Kouvidakis.},
author = {Fontanari, Claudio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Universal Picard variety; Geometric invariant theory; Spin curve; Stable curve; universal Picard variety; geometric invariant theory; spin curve; stable curve},
language = {eng},
month = {3},
number = {1},
pages = {45-59},
publisher = {Accademia Nazionale dei Lincei},
title = {On the geometry of moduli of curves and line bundles},
url = {http://eudml.org/doc/252379},
volume = {16},
year = {2005},
}

TY - JOUR
AU - Fontanari, Claudio
TI - On the geometry of moduli of curves and line bundles
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/3//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 1
SP - 45
EP - 59
AB - Here we focus on the geometry of $\overline{P}_{d,g}$, the compactification of the universal Picard variety constructed by L. Caporaso. In particular, we show that the moduli space of spin curves constructed by M. Cornalba naturally injects into $\overline{P}_{d,g}$ and we give generators and relations of the rational Picard group of $\overline{P}_{d,g}$, extending previous work by A. Kouvidakis.
LA - eng
KW - Universal Picard variety; Geometric invariant theory; Spin curve; Stable curve; universal Picard variety; geometric invariant theory; spin curve; stable curve
UR - http://eudml.org/doc/252379
ER -

References

top
  1. ARBARELLO, E. - CORNALBA, M., The Picard groups of the moduli spaces of curves. Topology, 26, 1987, 153-171. Zbl0625.14014MR895568DOI10.1016/0040-9383(87)90056-5
  2. ARBARELLO, E. - CORNALBA, M. - GRIFFITHS, P. - HARRIS, J., Geometry of Algebraic Curves, I. Grundlehren Math. Wiss., 267, Springer-Verlag, New York1985. Zbl0559.14017MR770932
  3. BINI, G. - FONTANARI, C., Moduli of Curves and Spin Structures via Algebraic Geometry. Trans. Amer. Math. Soc., to appear. Zbl1105.14030MR2216264DOI10.1090/S0002-9947-06-03838-4
  4. CAPORASO, L., A compactification of the universal Picard variety over the moduli space of stable curves. J. Amer. Math. Soc., 7, 1994, 589-660. Zbl0827.14014MR1254134DOI10.2307/2152786
  5. CAPORASO, L., On modular properties of odd theta characteristics. In: E. PREVIATO (ed.), Advances in algebraic geometry motivated by physics (Lowell, MA, 2000). Contemp. Math., 276, Amer. Math. Soc., Providence, RI, 2001, 101-114. Zbl1008.14007MR1837112DOI10.1090/conm/276/04514
  6. CAPORASO, L. - CASAGRANDE, C. - CORNALBA, M., Moduli of roots of line bundles on curves. Preprint math.AG/0404078, 2004. Zbl1140.14022MR2302513DOI10.1090/S0002-9947-07-04087-1
  7. CAPORASO, L. - SERNESI, E., Recovering plane curves from their bitangents. J. Algebraic Geom., 12, 2003, 225-244. Zbl1080.14523MR1949642DOI10.1090/S1056-3911-02-00307-7
  8. CAPORASO, L. - SERNESI, E., Characterizing curves by their odd theta-characteristics. J. Reine Angew. Math., 562, 2003, 101-135. Zbl1039.14011MR2011333DOI10.1515/crll.2003.070
  9. CORNALBA, M., Moduli of curves and theta-characteristics. In: M. CORNALBA - X. GOMEZ-MONT - A. VERJOVSKY (eds.), Lectures on Riemann surfaces (Trieste 1987). World Sci. Publishing, Singapore1989, 560-589. Zbl0800.14011MR1082361
  10. CORNALBA, M., A remark on the Picard group of spin moduli space. Rend. Mat. Acc. Lincei, s. 9, v. 2, 1991, 211-217. Zbl0768.14010MR1135424
  11. HARER, J., The rational Picard group of the moduli space of Riemann surfaces with spin structure. In: C.-F. BÖDIGHEIMER - R.M. HAIN (eds.), Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991). Contemp. Math., 150, Amer. Math. Soc., Providence, RI, 1993, 107-136. Zbl0814.14031MR1234262DOI10.1090/conm/150/01288
  12. HARRIS, J. - MORRISON, I., Moduli of curves. Graduate Texts in Math., 187, Springer, New York-London1998, 336 pp. Zbl0913.14005MR1631825
  13. HARTSHORNE, R., Algebraic Geometry. Graduate Texts in Math., 52, Springer, New York1977, 496 pp. Zbl0531.14001MR463157
  14. JARVIS, T.J., Torsion-free sheaves and moduli of generalized spin curves. Compositio Math., 110, 1998, 291-333. Zbl0912.14010MR1602060DOI10.1023/A:1000209527158
  15. JARVIS, T.J., Geometry of the moduli of higher spin curves. Internat. J. Math., 11, 2000, 637-663. Zbl1094.14504MR1780734DOI10.1142/S0129167X00000325
  16. JARVIS, T.J., The Picard group of the moduli of higher spin curves. New York J. Math., 7, 2001, 23-47. Zbl0977.14010MR1838471
  17. KOUVIDAKIS, A., The Picard group of the universal Picard varieties over the moduli space of curves. J. Diff. Geom., 34, 1991, 839-850. Zbl0780.14004MR1139648
  18. PANDHARIPANDE, R., A compactification over M ¯ g of the universal moduli space of slope-semistable vector bundles. J. Amer. Math. Soc., 9, 1996, 425-471. Zbl0886.14002MR1308406DOI10.1090/S0894-0347-96-00173-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.