On the geometry of moduli of curves and line bundles
- Volume: 16, Issue: 1, page 45-59
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topFontanari, Claudio. "On the geometry of moduli of curves and line bundles." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 16.1 (2005): 45-59. <http://eudml.org/doc/252379>.
@article{Fontanari2005,
abstract = {Here we focus on the geometry of $\overline\{P\}_\{d,g\}$, the compactification of the universal Picard variety constructed by L. Caporaso. In particular, we show that the moduli space of spin curves constructed by M. Cornalba naturally injects into $\overline\{P\}_\{d,g\}$ and we give generators and relations of the rational Picard group of $\overline\{P\}_\{d,g\}$, extending previous work by A. Kouvidakis.},
author = {Fontanari, Claudio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Universal Picard variety; Geometric invariant theory; Spin curve; Stable curve; universal Picard variety; geometric invariant theory; spin curve; stable curve},
language = {eng},
month = {3},
number = {1},
pages = {45-59},
publisher = {Accademia Nazionale dei Lincei},
title = {On the geometry of moduli of curves and line bundles},
url = {http://eudml.org/doc/252379},
volume = {16},
year = {2005},
}
TY - JOUR
AU - Fontanari, Claudio
TI - On the geometry of moduli of curves and line bundles
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2005/3//
PB - Accademia Nazionale dei Lincei
VL - 16
IS - 1
SP - 45
EP - 59
AB - Here we focus on the geometry of $\overline{P}_{d,g}$, the compactification of the universal Picard variety constructed by L. Caporaso. In particular, we show that the moduli space of spin curves constructed by M. Cornalba naturally injects into $\overline{P}_{d,g}$ and we give generators and relations of the rational Picard group of $\overline{P}_{d,g}$, extending previous work by A. Kouvidakis.
LA - eng
KW - Universal Picard variety; Geometric invariant theory; Spin curve; Stable curve; universal Picard variety; geometric invariant theory; spin curve; stable curve
UR - http://eudml.org/doc/252379
ER -
References
top- ARBARELLO, E. - CORNALBA, M., The Picard groups of the moduli spaces of curves. Topology, 26, 1987, 153-171. Zbl0625.14014MR895568DOI10.1016/0040-9383(87)90056-5
- ARBARELLO, E. - CORNALBA, M. - GRIFFITHS, P. - HARRIS, J., Geometry of Algebraic Curves, I. Grundlehren Math. Wiss., 267, Springer-Verlag, New York1985. Zbl0559.14017MR770932
- BINI, G. - FONTANARI, C., Moduli of Curves and Spin Structures via Algebraic Geometry. Trans. Amer. Math. Soc., to appear. Zbl1105.14030MR2216264DOI10.1090/S0002-9947-06-03838-4
- CAPORASO, L., A compactification of the universal Picard variety over the moduli space of stable curves. J. Amer. Math. Soc., 7, 1994, 589-660. Zbl0827.14014MR1254134DOI10.2307/2152786
- CAPORASO, L., On modular properties of odd theta characteristics. In: E. PREVIATO (ed.), Advances in algebraic geometry motivated by physics (Lowell, MA, 2000). Contemp. Math., 276, Amer. Math. Soc., Providence, RI, 2001, 101-114. Zbl1008.14007MR1837112DOI10.1090/conm/276/04514
- CAPORASO, L. - CASAGRANDE, C. - CORNALBA, M., Moduli of roots of line bundles on curves. Preprint math.AG/0404078, 2004. Zbl1140.14022MR2302513DOI10.1090/S0002-9947-07-04087-1
- CAPORASO, L. - SERNESI, E., Recovering plane curves from their bitangents. J. Algebraic Geom., 12, 2003, 225-244. Zbl1080.14523MR1949642DOI10.1090/S1056-3911-02-00307-7
- CAPORASO, L. - SERNESI, E., Characterizing curves by their odd theta-characteristics. J. Reine Angew. Math., 562, 2003, 101-135. Zbl1039.14011MR2011333DOI10.1515/crll.2003.070
- CORNALBA, M., Moduli of curves and theta-characteristics. In: M. CORNALBA - X. GOMEZ-MONT - A. VERJOVSKY (eds.), Lectures on Riemann surfaces (Trieste 1987). World Sci. Publishing, Singapore1989, 560-589. Zbl0800.14011MR1082361
- CORNALBA, M., A remark on the Picard group of spin moduli space. Rend. Mat. Acc. Lincei, s. 9, v. 2, 1991, 211-217. Zbl0768.14010MR1135424
- HARER, J., The rational Picard group of the moduli space of Riemann surfaces with spin structure. In: C.-F. BÖDIGHEIMER - R.M. HAIN (eds.), Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991). Contemp. Math., 150, Amer. Math. Soc., Providence, RI, 1993, 107-136. Zbl0814.14031MR1234262DOI10.1090/conm/150/01288
- HARRIS, J. - MORRISON, I., Moduli of curves. Graduate Texts in Math., 187, Springer, New York-London1998, 336 pp. Zbl0913.14005MR1631825
- HARTSHORNE, R., Algebraic Geometry. Graduate Texts in Math., 52, Springer, New York1977, 496 pp. Zbl0531.14001MR463157
- JARVIS, T.J., Torsion-free sheaves and moduli of generalized spin curves. Compositio Math., 110, 1998, 291-333. Zbl0912.14010MR1602060DOI10.1023/A:1000209527158
- JARVIS, T.J., Geometry of the moduli of higher spin curves. Internat. J. Math., 11, 2000, 637-663. Zbl1094.14504MR1780734DOI10.1142/S0129167X00000325
- JARVIS, T.J., The Picard group of the moduli of higher spin curves. New York J. Math., 7, 2001, 23-47. Zbl0977.14010MR1838471
- KOUVIDAKIS, A., The Picard group of the universal Picard varieties over the moduli space of curves. J. Diff. Geom., 34, 1991, 839-850. Zbl0780.14004MR1139648
- PANDHARIPANDE, R., A compactification over of the universal moduli space of slope-semistable vector bundles. J. Amer. Math. Soc., 9, 1996, 425-471. Zbl0886.14002MR1308406DOI10.1090/S0894-0347-96-00173-7
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.