The list linear arboricity of planar graphs
Discussiones Mathematicae Graph Theory (2009)
- Volume: 29, Issue: 3, page 499-510
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topXinhui An, and Baoyindureng Wu. "The list linear arboricity of planar graphs." Discussiones Mathematicae Graph Theory 29.3 (2009): 499-510. <http://eudml.org/doc/271000>.
@article{XinhuiAn2009,
abstract = {The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. An and Wu introduce the notion of list linear arboricity lla(G) of a graph G and conjecture that lla(G) = la(G) for any graph G. We confirm that this conjecture is true for any planar graph having Δ ≥ 13, or for any planar graph with Δ ≥ 7 and without i-cycles for some i ∈ \{3,4,5\}. We also prove that ⌈½Δ(G)⌉ ≤ lla(G) ≤ ⌈½(Δ(G)+1)⌉ for any planar graph having Δ ≥ 9.},
author = {Xinhui An, Baoyindureng Wu},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {list coloring; linear arboricity; list linear arboricity; planar graph},
language = {eng},
number = {3},
pages = {499-510},
title = {The list linear arboricity of planar graphs},
url = {http://eudml.org/doc/271000},
volume = {29},
year = {2009},
}
TY - JOUR
AU - Xinhui An
AU - Baoyindureng Wu
TI - The list linear arboricity of planar graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2009
VL - 29
IS - 3
SP - 499
EP - 510
AB - The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. An and Wu introduce the notion of list linear arboricity lla(G) of a graph G and conjecture that lla(G) = la(G) for any graph G. We confirm that this conjecture is true for any planar graph having Δ ≥ 13, or for any planar graph with Δ ≥ 7 and without i-cycles for some i ∈ {3,4,5}. We also prove that ⌈½Δ(G)⌉ ≤ lla(G) ≤ ⌈½(Δ(G)+1)⌉ for any planar graph having Δ ≥ 9.
LA - eng
KW - list coloring; linear arboricity; list linear arboricity; planar graph
UR - http://eudml.org/doc/271000
ER -
References
top- [1] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III: Cyclic and acyclic invariants, Math. Slovaca 30 (1980) 405-417. Zbl0458.05050
- [2] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs IV: Linear arboricity, Networks 11 (1981) 69-72, doi: 10.1002/net.3230110108. Zbl0479.05027
- [3] X. An and B. Wu, List linear arboricity of series-parallel graphs, submitted. Zbl1193.05063
- [4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier, New York, Macmillan, London, 1976). Zbl1226.05083
- [5] O.V. Borodin, On the total colouring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185, doi: 10.1515/crll.1989.394.180. Zbl0653.05029
- [6] H. Enomoto and B. Péroche, The linear arboricity of some regular graphs, J. Graph Theory 8 (1984) 309-324, doi: 10.1002/jgt.3190080211. Zbl0581.05017
- [7] F. Guldan, The linear arboricity of 10 regular graphs, Math. Slovaca 36 (1986) 225-228. Zbl0612.05050
- [8] F. Harary, Covering and packing in graphs I, Ann. N.Y. Acad. Sci. 175 (1970) 198-205, doi: 10.1111/j.1749-6632.1970.tb56470.x. Zbl0226.05119
- [9] J.L. Wu, On the linear arboricity of planar graphs, J. Graph Theory 31 (1999) 129-134, doi: 10.1002/(SICI)1097-0118(199906)31:2<129::AID-JGT5>3.0.CO;2-A Zbl0933.05056
- [10] J.L. Wu, The linear arboricity of series-parallel graphs, Graphs Combin. 16 (2000) 367-372, doi: 10.1007/s373-000-8299-9. Zbl0963.05073
- [11] J.L. Wu, J.F. Hou and G.Z. Liu, The linear arboricity of planar graphs with no short cycles, Theoretical Computer Science 381 (2007) 230-233, doi: 10.1016/j.tcs.2007.05.003. Zbl1206.05035
- [12] J.L. Wu and Y.W. Wu, The linear arboricity of planar graphs of maximum degree seven is four, J. Graph Theory 58 (2008) 210-220, doi: 10.1002/jgt.20305. Zbl1158.05023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.