On the construction of low-parametric families of min-stable multivariate exponential distributions in large dimensions
German Bernhart; Jan-Frederik Mai; Matthias Scherer
Dependence Modeling (2015)
- Volume: 3, Issue: 1, page 29-46, electronic only
- ISSN: 2300-2298
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Ballani, F. and Schlather, M. (2011). A construction principle for multivariate extreme value distributions. Biometrika, 98(3):633-645. [Crossref][WoS] Zbl1230.62073
- [2] Barndorff-Nielsen, O. E.,Maejima, M., and Sato, K.-I. (2006a). Infinite divisibility for stochastic processes and time change. J. Theoret. Probab., 19(2):411-446. Zbl1111.60028
- [3] Barndorff-Nielsen, O. E.,Maejima, M., and Sato, K.-I. (2006b). Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations. Bernoulli, 12(1):1-33. Zbl1102.60013
- [4] Barndorff-Nielsen, O. E., Rosinski, J., and Thorbjornsen, S. (2008). General Y-transformations. Alea, 4:131-165.
- [5] Brigo, D. and Chourdakis, K. (2012). Consistent single- and multi-step sampling of multivariate arrival times: A characterization of self-chaining copulas. Working paper, available at arxiv.org/abs/1204.2090.
- [6] Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula Methods in Finance. John Wiley & Sons, Chichester. Zbl1163.62081
- [7] De Haan, L. (1984). A spectral representation for max-stable processes. Ann. Probab., 12(4):1194-1204. [Crossref] Zbl0597.60050
- [8] De Haan, L. and Pickands, J. (1986). Stationary min-stable stochastic processes. Probab. Theory Rel. Fields, 72(4):477-492. [Crossref] Zbl0577.60034
- [9] De Haan, L. and Resnick, S. (1977). Limit theory for multivariate sample extremes. Z. Wahrsch. verw. Gebiete, 40(4):317-337. Zbl0375.60031
- [10] Durante, F. and Salvadori, G. (2010). On the construction of multivariate extreme value models via copulas. Environmetrics, 21(2):143-161.
- [11] Es-Sebaiy, K. and Ouknine, Y. (2007). How rich is the class of processes which are infinitely divisible with respect to time? Statist. Probab. Lett., 78(5):537-547. [WoS] Zbl1216.60042
- [12] Esary, J. D. and Marshall, A. W. (1974). Multivariate distributions with exponential minimums. Ann. Statist., 2:84-98. [Crossref] Zbl0293.60017
- [13] Fougères, A.-L., Nolan, J. P., and Rootzén, H. (2009). Models for dependent extremes using stable mixtures. Scand. J. Stat., 36(1):42-59. Zbl1195.62067
- [14] Gudendorf, G. and Segers, J. (2010). Extreme-value copulas. In Jaworski, P., Durante, F., Härdle,W. K., and Rychlik, T., editors, Copula Theory and its Applications, 127-145. Springer, Berlin. Zbl06085266
- [15] Gumbel, E. J. and Goldstein, N. (1964). Analysis of empirical bivariate extremal distributions. J. Amer. Statist. Assoc., 59(307):794-816. Zbl0129.11404
- [16] Hofmann, D. (2009). Characterization of the D-Norm Corresponding to aMultivariate Extreme Value Distribution. PhD thesis, Universität Würzburg, http://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/3454.
- [17] Hürlimann,W. (2003). Hutchinson-Lai’s conjecture for bivariate extreme value copulas. Statist. Probab. Lett., 61(2):191-198. Zbl1101.62340
- [18] Jiménez, J. R., Villa-Diharce, E., and Flores, M. (2001). Nonparametric estimation of the dependence function in bivariate extreme value distributions. J. Multivariate Anal., 76(2):159-191. [WoS][Crossref] Zbl0998.62050
- [19] Joe, H. (1990). Families of min-stable multivariate exponential and multivariate extreme value distributions. Statist. Probab. Lett., 9(1):75-81. Zbl0686.62035
- [20] Joe, H. (1997). Multivariate Models and Multivariate Dependence Concepts. Chapman & Hall/CRC. Zbl0990.62517
- [21] Joe, H. (2014). Dependence Modeling with Copulas. Chapman & Hall/CRC. Zbl06345338
- [22] Jurek, Z. J. (1985). Relations between the s-selfdecomposable and selfdecomposable measures. Ann. Probab., 13(2):592- 608. [Crossref] Zbl0569.60011
- [23] Klenke, A. (2006). Wahrscheinlichkeitstheorie. Springer, Berlin.
- [24] Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications. Imperial College Press, London. Zbl0960.62051
- [25] Longin, F. and Solnik, B. (2001). Extreme correlation of international equity markets. J. Finance, 56(2):649-676.
- [26] Mai, J.-F. (2014). Mutivariate exponential distributions with latent factor structure and related topics. Habilitation Thesis, Technische Universität München, https://mediatum.ub.tum.de/node?id=1236170.
- [27] Mai, J.-F. and Scherer, M. (2014). Characterization of extendible distributions with exponential minima via processes that are infinitely divisible with respect to time. Extremes, 17(1):77-95. Zbl1310.62072
- [28] Mai, J.-F., Scherer, M., and Zagst, R. (2013). CIID frailty models and implied copulas. In Jaworski, P., Durante, F., and Härdle, W. K., editors, Copulae in Mathematical and Quantitative Finance, 201-230. Springer, Berlin. Zbl1273.62070
- [29] Mansuy, R. (2005). On processes which are infinitely divisible with respect to time. Working paper, arxiv.org/abs/math/ 0504408.
- [30] Molchanov, I. (2008). Convex geometry of max-stable distributions. Extremes, 11(3):235-259. Zbl1164.60003
- [31] Nelsen, R. B. (2006). An Introduction to Copulas. Springer, New York. Zbl1152.62030
- [32] Pickands, J. (1989).Multivariate negative exponential and extreme value distributions. In Hüsler, J. and Reiss, R.-D., editors, Extreme Value Theory, 262-274. Springer, New York. Zbl0672.62065
- [33] Poon, S.-H., Rockinger, M., and Tawn, J. (2004). Extreme value dependence in financial markets: Diagnostics, models, and financial implications. Rev. Financ. Stud., 17(2):581-610. [Crossref]
- [34] Rajput, B. S. and Rosinski, J. (1989). Spectral representations of infinitely divisible processes. Probab. Theory Rel. Fields, 82(3):451-487. [Crossref] Zbl0659.60078
- [35] Resnick, S. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York. Zbl0633.60001
- [36] Ressel, P. (2013). Homogeneous distributions - and a spectral representation of classical mean values and stable tail dependence functions. J. Multivariate Anal., 117:246-256. [Crossref][WoS] Zbl1283.60021
- [37] Sato, K.-I. (1999). Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge. Zbl0973.60001
- [38] Sato, K.-I. (2004). Stochastic integrals in additive processes and application to semi-Lévy processes. Osaka J. Math., 41(1):211-236. Zbl1050.60054
- [39] Schilling, R., Song, R., and Vondracek, Z. (2010). Bernstein Functions. De Gruyter, Berlin. Zbl1197.33002
- [40] Schönbucher, P. J. and Schubert, D. (2001). Copula-dependent defaults in intensity models. Working paper, http://ssrn. com/abstract=301968.
- [41] Segers, J. (2012). Max-stable models for multivariate extremes. REVSTAT, 10(1):61-82. Zbl1297.62121
- [42] Vasicek, O. A. (2002). Loan portfolio value. Risk, 160-162.
- [43] Williamson, R. (1956). Multiply monotone functions and their Laplace transforms. Duke Math. J., 23(2):189-207. [Crossref] Zbl0070.28501