Forecasting time series with multivariate copulas
Clarence Simard; Bruno Rémillard
Dependence Modeling (2015)
- Volume: 3, Issue: 1, page 59-82, electronic only
- ISSN: 2300-2298
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Aas, K., Czado, C., Frigessi, A., and Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance Math. Econom., 44(2), 182–198. Zbl1165.60009
- [2] Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Automatic Control, AC-19(6), 716–723. Zbl0314.62039
- [3] Andersen, T., Bollerslev, T., and Diebold, F. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. Rev. Econ. Stat., 89(4), 701–720. [Crossref]
- [4] Andersen, T., Bollerslev, T., Diebold, F., and Labys, P. (2001). The distribution of realized exchange rate volatility. J. Amer. Statist. Assoc., 96(453), 42–55. [Crossref] Zbl1015.62107
- [5] Beare, B. (2010). Copulas and temporal dependence. Econometrica, 78(1), 395–410. [WoS][Crossref] Zbl1202.91271
- [6] Beare, B. K. and Seo, J. (2015). Vine copula specifications for stationary multivariate Markov chains. J. Time. Ser. Anal., 36, 228–246. [WoS][Crossref] Zbl1320.62224
- [7] Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. Springer-Verlag, New York, second edition. Zbl0709.62080
- [8] Bush, T., Christensen, B., and M.Ø., N. (2011). The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets. J. Econometrics, 60(1), 48–57. [Crossref]
- [9] Chen, X. and Fan, Y. (2006). Estimation of copula-based semiparametric model time series models. J. Econometrics, 130(2), 307–335. Zbl1337.62201
- [10] Corsi, F. (2009). A simple approximate long-memory model of realized volatility. J. Financ. Econ., 7(2), 174–196.
- [11] Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. J. Bus. Econom. Statist., 13(3), 253–263.
- [12] Duchesne, P., Ghoudi, K., and Rémillard, B. (2012). On testing for independence between the innovations of several time series. Canad. J. Statist., 40(3), 447–479. Zbl1333.62208
- [13] Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. Economet. Theor., 11(1),122–150. [Crossref]
- [14] Erhardt, T. M., Czado, C., and Schepsmeier, U. (2014). R-vine models for spatial time series with an application to daily mean temperature. Biometrics, to appear. DOI:10.1111/biom.12279 [WoS][Crossref] Zbl06528641
- [15] Fang, H.-B., Fang, K.-T., and Kotz, S. (2002). The meta-elliptical distributions with given marginals. J. Multivariate Anal., 82(1), 1–16. [Crossref] Zbl1002.62016
- [16] Genest, C., Gendron, M., and Bourdeau-Brien, M. (2009). The advent of copula in finance. Europ. J. Financ., 15(7-8), 609–618.
- [17] Genest, C. and Rémillard, B. (2004). Tests of independence or randomness based on the empirical copula process. Test, 13(2), 335–369. [Crossref] Zbl1069.62039
- [18] Ghoudi, K. and Rémillard, B. (2004). Empirical processes based on pseudo-observations. II. The multivariate case. In Asymptotic Methods in Stochastics, 381–406. Amer. Math. Soc., Providence, RI. Zbl1079.60024
- [19] Kurowicka, D. and Joe, H., editors (2011). Dependence Modeling. Vine Copula Handbook. World Scientific, Hackensack, NJ.
- [20] Martens, M. and van Dijk, D. (2006). Measuring volatility with the realized range. J. Econometrics, 138(1), 181–207. [WoS] Zbl06577509
- [21] Nelsen, R. B. (1999). An introduction to copulas. Springer-Verlag, New York. Zbl0909.62052
- [22] Rémillard, B. (2013). Statistical Methods For Financial Engineering. CRC Press, Boca Raton, FL. Zbl1273.91010
- [23] Rémillard, B., Papageorgiou, N., and Soustra, F. (2012). Copula-based semiparametric models for multivariate time series. J. Multivariate Anal., 110, 30–42. [WoS][Crossref] Zbl1281.62136
- [24] Rio, E. (2000). Théorie asymptotique des processus aléatoires faiblement dépendants. Springer-Verlag, Berlin.
- [25] Smith, M. (2015). Copula modelling of dependence in multivariate time series. Int. J. Forecasting, to appear. DOI:10.1016/j.ijforecast.2014.04.003 [WoS][Crossref]
- [26] Sokolinskiy, O. and Van Dijk, D. (2011). Forecasting volatility with copula-based time series models. Technical report, Tinbergen Institute Discussion Paper.
- [27] Soustra, F. (2006). Pricing of synthetic CDO tranches, analysis of base correlations and an introduction to dynamic copulas. Master thesis, HEC Montréal.
- [28] Zhang, L., Mykland, P., and Aït-Sahalia, Y. (2005). A tale of two time scales: Determining integrated volatility with noisy high-frequency data. J. Amer. Statist. Assoc., 100(472), 1394–1414. [Crossref] Zbl1117.62461
- [29] Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates. J. Bus. Econom. Statist., 14(1), 45–52.