Multivariate Markov Families of Copulas
Ludger Overbeck; Wolfgang M. Schmidt
Dependence Modeling (2015)
- Volume: 3, Issue: 1, page 159-171, electronic only
- ISSN: 2300-2298
Access Full Article
topAbstract
topHow to cite
topLudger Overbeck, and Wolfgang M. Schmidt. "Multivariate Markov Families of Copulas." Dependence Modeling 3.1 (2015): 159-171, electronic only. <http://eudml.org/doc/275965>.
@article{LudgerOverbeck2015,
abstract = {For the Markov property of a multivariate process, a necessary and suficient condition on the multidimensional copula of the finite-dimensional distributions is given. This establishes that the Markov property is solely a property of the copula, i.e., of the dependence structure. This extends results by Darsow et al. [11] from dimension one to the multivariate case. In addition to the one-dimensional case also the spatial copula between the different dimensions has to be taken into account. Examples are also given.},
author = {Ludger Overbeck, Wolfgang M. Schmidt},
journal = {Dependence Modeling},
keywords = {Markov process; copula; Chapman–Kolmogorov equation; Markov processes; copulas; Chapman-Kolmogorov equation},
language = {eng},
number = {1},
pages = {159-171, electronic only},
title = {Multivariate Markov Families of Copulas},
url = {http://eudml.org/doc/275965},
volume = {3},
year = {2015},
}
TY - JOUR
AU - Ludger Overbeck
AU - Wolfgang M. Schmidt
TI - Multivariate Markov Families of Copulas
JO - Dependence Modeling
PY - 2015
VL - 3
IS - 1
SP - 159
EP - 171, electronic only
AB - For the Markov property of a multivariate process, a necessary and suficient condition on the multidimensional copula of the finite-dimensional distributions is given. This establishes that the Markov property is solely a property of the copula, i.e., of the dependence structure. This extends results by Darsow et al. [11] from dimension one to the multivariate case. In addition to the one-dimensional case also the spatial copula between the different dimensions has to be taken into account. Examples are also given.
LA - eng
KW - Markov process; copula; Chapman–Kolmogorov equation; Markov processes; copulas; Chapman-Kolmogorov equation
UR - http://eudml.org/doc/275965
ER -
References
top- [1] Abegaz, F. and Naik-Nimbalkar, U. (2008). Modeling statistical dependence of Markov chains via copula models. J. Statist. Plann. Inference, 138(4), 1131–1146. Zbl1130.62087
- [2] Beare, B.K. (2010). Copulas and temporal dependence. Econometrica, 78(1), 395–410. [WoS][Crossref] Zbl1202.91271
- [3] Beare, B.K. and Seo, J. (2015) Vine copula specification for stationary multivariate Markov chains. J. Time Series Anal., 36, 228–246. Zbl1320.62224
- [4] Bielecki, T. R., Crépey, S., Jeanblanc, M., and Zargari, B. (2012). Valuation and hedging of CDS counterparty exposure in a Markov copula model. Int. J. Theor. Appl. Finance, 15(01). [Crossref] Zbl1243.91100
- [5] Bielecki, T. R., Jakubowski, J., Vidozzi, A., and Vidozzi, L. (2008). Study of dependence for some stochastic processes. Stoch. Anal. Appl., 26(4), 903–924. [Crossref] Zbl1157.60312
- [6] Brechmann, E.C., Czado, C., and Aas, K. (2012) Truncated regular vines in high dimensions with application to financial data. Canad. J. Statist., 40 (1), 68-85. Zbl1274.62381
- [7] Chen, X. and Fan, Y. (2006) Estimation of copula-based semiparametric time series models. J. Econometrics, 130, 307–335. Zbl1337.62201
- [8] Chen, X. , Wu, W.B., and Yi, Y. (2009) Efficient estimation of copula-based semiparametric Markov models. Ann. Statist., 37 (6B), 4214-4253. [Crossref] Zbl1191.62140
- [9] Cherubini, U., Mulinacci, S., Gobbi, F., and Romagnoli, S. (2011a). Dynamic Copula Methods in Finance. Wiley. Zbl1274.60226
- [10] Cherubini, U., Mulinacci, S., and Romagnoli, S. (2011b). A copula-based model of speculative price dynamics in discrete time. J. Multivariate Anal., 102(6), 1047–1063. [WoS][Crossref] Zbl1274.60226
- [11] Darsow, W., Nguyen, B., and Olsen, E. (1992). Copulas and Markov processes. Illinois J. Math, 36(4), 600–642. Zbl0770.60019
- [12] Haff, I.H. (2012) Estimating the parameters of a pair copula construction. Bernoulli, 19(2), 462–491. [Crossref] Zbl06168760
- [13] Ibragimov, R. (2009). Copula-based characterizations for higher order Markov processes. Econometric Theory, 25(03), 819–846. [WoS][Crossref] Zbl1277.60123
- [14] Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall/CRC. Zbl0990.62517
- [15] McNeil, A.J., Frey, R., and Embrechts, P. (2010). Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press. Zbl1337.91003
- [16] Nelsen, R. (1999). An Introduction to Copulas. Springer Verlag, New York. Zbl0909.62052
- [17] Rémillard, B., Papageorgiou, N., and Soustra, F. (2012) Copula-based semiparametric models for multivariate time series. J. Multivariate Anal., 110, 30–42. [WoS] Zbl1281.62136
- [18] Simard, C. and Rémillard, B. (2015) Forecasting time series with multivariate copulas. Depend. Model., 3, 59–82. Zbl1328.62546
- [19] Stöber, J. and Czado, C. (2014) Regime switches in the dependence structure of multidimensional financial data. Comput. Stat. Data An., 76, 672–686. [WoS]
- [20] Yi,W. and Liao, S.S. (2010) Statistical properties of parametric estimators forMarkov chain vectors based on copula models. J. Statist. Plann. Inference, 140, 1465–1480. Zbl1185.62151
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.