Semilinear problems for the fractional laplacian with a singular nonlinearity
Begoña Barrios; Ida De Bonis; María Medina; Ireneo Peral
Open Mathematics (2015)
- Volume: 13, Issue: 1
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topBegoña Barrios, et al. "Semilinear problems for the fractional laplacian with a singular nonlinearity." Open Mathematics 13.1 (2015): null. <http://eudml.org/doc/271034>.
@article{BegoñaBarrios2015,
abstract = {The aim of this paper is to study the solvability of the problem [...] where Ω is a bounded smooth domain of RN, N > 2s, M ε \{0, 1\}, 0 < s < 1, γ > 0, λ > 0, p > 1 and f is a nonnegative function. We distinguish two cases: – For M = 0, we prove the existence of a solution for every γ > 0 and λ > 0. A1 – For M = 1, we consider f ≡ 1 and we find a threshold ʌ such that there exists a solution for every 0 < λ < ʌ ƒ, and there does not for λ > ʌ ƒ},
author = {Begoña Barrios, Ida De Bonis, María Medina, Ireneo Peral},
journal = {Open Mathematics},
keywords = {Fractional Laplacian; Solvability of elliptic equations; Existence and multiplicity},
language = {eng},
number = {1},
pages = {null},
title = {Semilinear problems for the fractional laplacian with a singular nonlinearity},
url = {http://eudml.org/doc/271034},
volume = {13},
year = {2015},
}
TY - JOUR
AU - Begoña Barrios
AU - Ida De Bonis
AU - María Medina
AU - Ireneo Peral
TI - Semilinear problems for the fractional laplacian with a singular nonlinearity
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - null
AB - The aim of this paper is to study the solvability of the problem [...] where Ω is a bounded smooth domain of RN, N > 2s, M ε {0, 1}, 0 < s < 1, γ > 0, λ > 0, p > 1 and f is a nonnegative function. We distinguish two cases: – For M = 0, we prove the existence of a solution for every γ > 0 and λ > 0. A1 – For M = 1, we consider f ≡ 1 and we find a threshold ʌ such that there exists a solution for every 0 < λ < ʌ ƒ, and there does not for λ > ʌ ƒ
LA - eng
KW - Fractional Laplacian; Solvability of elliptic equations; Existence and multiplicity
UR - http://eudml.org/doc/271034
ER -
References
top- [1] Ambrosetti A., Brezis H., Cerami G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 1994, 122(2), 519-543 Zbl0805.35028
- [2] Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14, 349-381 [Crossref] Zbl0273.49063
- [3] Arcoya D., Boccardo L., Multiplicity of solutions for a Dirichlet problem with a singular and a supercritical nonlinearities, Differential Integral Equations, 2013, 26, 119-128 Zbl1289.35098
- [4] Arcoya D., Moreno-Merida L., Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity, Nonlinear Anal., 2014, 95, 281-291 Zbl1285.35013
- [5] Barrios B., Colorado E., Servadei R., Soria F., A critical fractional equation with concave-convex nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire (in press), DOI: 10.1016/j.anihpc.2014.04.003 [Crossref] Zbl06477004
- [6] Barrios B., Medina M., Peral I., Some remarks on the solvability of non local elliptic problems with the Hardy potential. Commun. Contemp. Math., 2014, 16, 4 [Crossref][WoS] Zbl1295.35376
- [7] Boccardo L., Orsina L., Semilinear elliptic equations with singular nolinearities, Calc. Var. Partial Differential Equations, 2010, 37(3-4), 363-380
- [8] Boccardo L., A Dirichlet problem with singular and supercritical nonlinearities, Nonlinear Anal., 2012, 75, 4436-4440 Zbl1250.35112
- [9] Boccardo L., Escobedo M., Peral I., A Dirichlet problem involving critical exponent, Nonlinear Anal., 1995, 24, 1639-1848
- [10] Brezis H. , Kamin S., Sublinear elliptic equations in Rn, Manuscripta Math., 1992, 74, 87–106 Zbl0761.35027
- [11] Brezis H., Nirenberg L., H1 versus C1 local minimizers, C. R. Acad. Sci. Paris t., 1993, 317, 465-472 Zbl0803.35029
- [12] Canino A., Degiovanni M., A variational approach to a class of singular semilinear elliptic equations, Journal of Convex Analysis, 2004, 11(1), 147-162 Zbl1073.35092
- [13] Crandall M. G., Rabinowitz P. H., Tartar L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 1977, 2, 193-222 Zbl0362.35031
- [14] Coclite M. M., Palmieri G., On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations, 1989, 14(10), 1315-1327 Zbl0692.35047
- [15] Dávila J., A strong maximum principle for the Laplace equation with mixed boundary condition, J. Funct. Anal., 2001, 183, 231-244 Zbl0979.35037
- [16] Di Nezza E., Palatucci G., Valdinoci E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5), 521-573 [WoS] Zbl1252.46023
- [17] García Azorero J. P., Peral I., Multiplicity of solutions for elliptic problems with critical exponents or with a non-symmetric term, Transactions American Mathematical Society, 1991, 323(2), 877-895 Zbl0729.35051
- [18] García Azorero J. P., Manfredi J. J., Peral I., Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math., 2000, 2(3), 385-404 [Crossref] Zbl0965.35067
- [19] Ghergu M., Radulescu V., Singular elliptic problems with convection term in anisotropic media, Mathematical analysis and applications, 2006, 74-89, AIP Conf. Proc., 835, Amer. Inst. Phys., Melville, NY
- [20] Ghoussoub N., Preiss D., A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1989, 6(5), 321-330 Zbl0711.58008
- [21] Hirano N., Saccon C., Shioji N., Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations, 2008, 245, 1997-2037 Zbl1158.35044
- [22] Greco A., Servadei R., Hopf’s lemma and constrained radial symmetry for the fractional laplacian, preprint
- [23] Lair A. V., Shaker A. W., Classical and Weak Solutions of a Singular Semilinear Elliptic Problem, Journal of Mathematical Analysis and Applications, 1997, 211, 371-385 Zbl0880.35043
- [24] Landkof N., Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer- Verlag, New York-Heidelberg, 1972
- [25] Lazer A. C., McKenna P. J., On a Singular Nonlinear Elliptic Boundary-Value Problem, Proceedings of the American Mathematical Society, 1991, 111(3), 721-730 Zbl0727.35057
- [26] Lazer A. C., McKenna P. J., On Singular Boundary Value Problems for the Monge-Ampère Operator, Journal of Mathematical Analysis and Applications, 1996, 197, 341-362 Zbl0856.35042
- [27] Leonori T., Peral I., Primo A., Soria F., Basic estimates for solution of elliptic and parabolic equations for a class of nonlocal operators, preprint Zbl1332.45009
- [28] Ros-Oton X., Serra J., The Dirichlet problem for the fractional laplacian: regularity up to the boundary, J. Math. Pures Appl. (9), 2014, 101(3), 275-302 Zbl1285.35020
- [29] Servadei R., Valdinoci E., Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 2012, 389(2), 887-898 [WoS] Zbl1234.35291
- [30] Servadei R., Valdinoci E., Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 2013, 33(5), 2105-2137 [WoS] Zbl1303.35121
- [31] Silvestre L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 2007, 60(1), 67-112 [WoS] Zbl1141.49035
- [32] Stampacchia G., Le probléme de Dirichlet pour les équations elliptiques du second ordre á coefficients discontinus, Ann. Inst. Fourier (Grenoble), 1965, 15, fasc. 1, 189-258 [Crossref] Zbl0151.15401
- [33] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970 Zbl0207.13501
- [34] Stuart C. A., Self-trapping of an electromagnetic field and bifurcation from the essential spectrum, Arch. Rational Mech. Anal., 1991, 113, 65-96 [Crossref] Zbl0745.35044
- [35] Zhang Z., Boundary behavior of solutions to some singular elliptic boundary value problems. Nonlinear Anal., 2008, 69(7), 2293-2302 Zbl1151.35032
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.