Semilinear problems for the fractional laplacian with a singular nonlinearity

Begoña Barrios; Ida De Bonis; María Medina; Ireneo Peral

Open Mathematics (2015)

  • Volume: 13, Issue: 1
  • ISSN: 2391-5455

Abstract

top
The aim of this paper is to study the solvability of the problem [...] where Ω is a bounded smooth domain of RN, N > 2s, M ε {0, 1}, 0 < s < 1, γ > 0, λ > 0, p > 1 and f is a nonnegative function. We distinguish two cases: – For M = 0, we prove the existence of a solution for every γ > 0 and λ > 0. A1 – For M = 1, we consider f ≡ 1 and we find a threshold ʌ such that there exists a solution for every 0 < λ < ʌ ƒ, and there does not for λ > ʌ ƒ

How to cite

top

Begoña Barrios, et al. "Semilinear problems for the fractional laplacian with a singular nonlinearity." Open Mathematics 13.1 (2015): null. <http://eudml.org/doc/271034>.

@article{BegoñaBarrios2015,
abstract = {The aim of this paper is to study the solvability of the problem [...] where Ω is a bounded smooth domain of RN, N > 2s, M ε \{0, 1\}, 0 < s < 1, γ > 0, λ > 0, p > 1 and f is a nonnegative function. We distinguish two cases: – For M = 0, we prove the existence of a solution for every γ > 0 and λ > 0. A1 – For M = 1, we consider f ≡ 1 and we find a threshold ʌ such that there exists a solution for every 0 < λ < ʌ ƒ, and there does not for λ > ʌ ƒ},
author = {Begoña Barrios, Ida De Bonis, María Medina, Ireneo Peral},
journal = {Open Mathematics},
keywords = {Fractional Laplacian; Solvability of elliptic equations; Existence and multiplicity},
language = {eng},
number = {1},
pages = {null},
title = {Semilinear problems for the fractional laplacian with a singular nonlinearity},
url = {http://eudml.org/doc/271034},
volume = {13},
year = {2015},
}

TY - JOUR
AU - Begoña Barrios
AU - Ida De Bonis
AU - María Medina
AU - Ireneo Peral
TI - Semilinear problems for the fractional laplacian with a singular nonlinearity
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - null
AB - The aim of this paper is to study the solvability of the problem [...] where Ω is a bounded smooth domain of RN, N > 2s, M ε {0, 1}, 0 < s < 1, γ > 0, λ > 0, p > 1 and f is a nonnegative function. We distinguish two cases: – For M = 0, we prove the existence of a solution for every γ > 0 and λ > 0. A1 – For M = 1, we consider f ≡ 1 and we find a threshold ʌ such that there exists a solution for every 0 < λ < ʌ ƒ, and there does not for λ > ʌ ƒ
LA - eng
KW - Fractional Laplacian; Solvability of elliptic equations; Existence and multiplicity
UR - http://eudml.org/doc/271034
ER -

References

top
  1. [1] Ambrosetti A., Brezis H., Cerami G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 1994, 122(2), 519-543 Zbl0805.35028
  2. [2] Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14, 349-381 [Crossref] Zbl0273.49063
  3. [3] Arcoya D., Boccardo L., Multiplicity of solutions for a Dirichlet problem with a singular and a supercritical nonlinearities, Differential Integral Equations, 2013, 26, 119-128 Zbl1289.35098
  4. [4] Arcoya D., Moreno-Merida L., Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity, Nonlinear Anal., 2014, 95, 281-291 Zbl1285.35013
  5. [5] Barrios B., Colorado E., Servadei R., Soria F., A critical fractional equation with concave-convex nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire (in press), DOI: 10.1016/j.anihpc.2014.04.003 [Crossref] Zbl06477004
  6. [6] Barrios B., Medina M., Peral I., Some remarks on the solvability of non local elliptic problems with the Hardy potential. Commun. Contemp. Math., 2014, 16, 4 [Crossref][WoS] Zbl1295.35376
  7. [7] Boccardo L., Orsina L., Semilinear elliptic equations with singular nolinearities, Calc. Var. Partial Differential Equations, 2010, 37(3-4), 363-380 
  8. [8] Boccardo L., A Dirichlet problem with singular and supercritical nonlinearities, Nonlinear Anal., 2012, 75, 4436-4440 Zbl1250.35112
  9. [9] Boccardo L., Escobedo M., Peral I., A Dirichlet problem involving critical exponent, Nonlinear Anal., 1995, 24, 1639-1848 
  10. [10] Brezis H. , Kamin S., Sublinear elliptic equations in Rn, Manuscripta Math., 1992, 74, 87–106 Zbl0761.35027
  11. [11] Brezis H., Nirenberg L., H1 versus C1 local minimizers, C. R. Acad. Sci. Paris t., 1993, 317, 465-472 Zbl0803.35029
  12. [12] Canino A., Degiovanni M., A variational approach to a class of singular semilinear elliptic equations, Journal of Convex Analysis, 2004, 11(1), 147-162 Zbl1073.35092
  13. [13] Crandall M. G., Rabinowitz P. H., Tartar L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 1977, 2, 193-222 Zbl0362.35031
  14. [14] Coclite M. M., Palmieri G., On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations, 1989, 14(10), 1315-1327 Zbl0692.35047
  15. [15] Dávila J., A strong maximum principle for the Laplace equation with mixed boundary condition, J. Funct. Anal., 2001, 183, 231-244 Zbl0979.35037
  16. [16] Di Nezza E., Palatucci G., Valdinoci E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5), 521-573 [WoS] Zbl1252.46023
  17. [17] García Azorero J. P., Peral I., Multiplicity of solutions for elliptic problems with critical exponents or with a non-symmetric term, Transactions American Mathematical Society, 1991, 323(2), 877-895 Zbl0729.35051
  18. [18] García Azorero J. P., Manfredi J. J., Peral I., Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math., 2000, 2(3), 385-404 [Crossref] Zbl0965.35067
  19. [19] Ghergu M., Radulescu V., Singular elliptic problems with convection term in anisotropic media, Mathematical analysis and applications, 2006, 74-89, AIP Conf. Proc., 835, Amer. Inst. Phys., Melville, NY 
  20. [20] Ghoussoub N., Preiss D., A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1989, 6(5), 321-330 Zbl0711.58008
  21. [21] Hirano N., Saccon C., Shioji N., Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations, 2008, 245, 1997-2037 Zbl1158.35044
  22. [22] Greco A., Servadei R., Hopf’s lemma and constrained radial symmetry for the fractional laplacian, preprint 
  23. [23] Lair A. V., Shaker A. W., Classical and Weak Solutions of a Singular Semilinear Elliptic Problem, Journal of Mathematical Analysis and Applications, 1997, 211, 371-385 Zbl0880.35043
  24. [24] Landkof N., Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer- Verlag, New York-Heidelberg, 1972 
  25. [25] Lazer A. C., McKenna P. J., On a Singular Nonlinear Elliptic Boundary-Value Problem, Proceedings of the American Mathematical Society, 1991, 111(3), 721-730 Zbl0727.35057
  26. [26] Lazer A. C., McKenna P. J., On Singular Boundary Value Problems for the Monge-Ampère Operator, Journal of Mathematical Analysis and Applications, 1996, 197, 341-362 Zbl0856.35042
  27. [27] Leonori T., Peral I., Primo A., Soria F., Basic estimates for solution of elliptic and parabolic equations for a class of nonlocal operators, preprint Zbl1332.45009
  28. [28] Ros-Oton X., Serra J., The Dirichlet problem for the fractional laplacian: regularity up to the boundary, J. Math. Pures Appl. (9), 2014, 101(3), 275-302 Zbl1285.35020
  29. [29] Servadei R., Valdinoci E., Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 2012, 389(2), 887-898 [WoS] Zbl1234.35291
  30. [30] Servadei R., Valdinoci E., Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 2013, 33(5), 2105-2137 [WoS] Zbl1303.35121
  31. [31] Silvestre L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 2007, 60(1), 67-112 [WoS] Zbl1141.49035
  32. [32] Stampacchia G., Le probléme de Dirichlet pour les équations elliptiques du second ordre á coefficients discontinus, Ann. Inst. Fourier (Grenoble), 1965, 15, fasc. 1, 189-258 [Crossref] Zbl0151.15401
  33. [33] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970 Zbl0207.13501
  34. [34] Stuart C. A., Self-trapping of an electromagnetic field and bifurcation from the essential spectrum, Arch. Rational Mech. Anal., 1991, 113, 65-96 [Crossref] Zbl0745.35044
  35. [35] Zhang Z., Boundary behavior of solutions to some singular elliptic boundary value problems. Nonlinear Anal., 2008, 69(7), 2293-2302 Zbl1151.35032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.