# Disjoint 5-cycles in a graph

Discussiones Mathematicae Graph Theory (2012)

- Volume: 32, Issue: 2, page 221-242
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topHong Wang. "Disjoint 5-cycles in a graph." Discussiones Mathematicae Graph Theory 32.2 (2012): 221-242. <http://eudml.org/doc/271045>.

@article{HongWang2012,

abstract = {We prove that if G is a graph of order 5k and the minimum degree of G is at least 3k then G contains k disjoint cycles of length 5.},

author = {Hong Wang},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {5-cycles; pentagons; cycles; cycle coverings},

language = {eng},

number = {2},

pages = {221-242},

title = {Disjoint 5-cycles in a graph},

url = {http://eudml.org/doc/271045},

volume = {32},

year = {2012},

}

TY - JOUR

AU - Hong Wang

TI - Disjoint 5-cycles in a graph

JO - Discussiones Mathematicae Graph Theory

PY - 2012

VL - 32

IS - 2

SP - 221

EP - 242

AB - We prove that if G is a graph of order 5k and the minimum degree of G is at least 3k then G contains k disjoint cycles of length 5.

LA - eng

KW - 5-cycles; pentagons; cycles; cycle coverings

UR - http://eudml.org/doc/271045

ER -

## References

top- [1] S. Abbasi, PhD Thesis (Rutgers University 1998).
- [2] B. Bollobás, Extremal Graph Theory ( Academic Press, London, 1978).
- [3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423-439, doi: 10.1007/BF01895727. Zbl0118.19001
- [4] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227-230, doi: 10.1016/0012-365X(84)90050-5.
- [5] P. Erdös, Some recent combinatorial problems, Technical Report, University of Bielefeld, Nov. 1990.
- [6] B. Randerath, I. Schiermeyer and H. Wang, On quadrilaterals in a graph, Discrete Math. 203 (1999) 229-237, doi: 10.1016/S0012-365X(99)00053-9. Zbl0932.05046
- [7] H. Wang, On quadrilaterals in a graph, Discrete Math. 288 (2004) 149-166, doi: 10.1016/j.disc.2004.02.020.
- [8] H. Wang, Proof of the Erdös-Faudree conjecture on quadrilaterals, Graphs and Combin. 26 (2010) 833-877, doi: 10.1007/s00373-010-0948-3. Zbl1223.05145

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.