Small perturbations with large effects on value-at-risk
Manuel L. Esquível; Luís Dimas; João Tiago Mexia; Philippe Didier
Discussiones Mathematicae Probability and Statistics (2013)
- Volume: 33, Issue: 1-2, page 151-169
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topManuel L. Esquível, et al. "Small perturbations with large effects on value-at-risk." Discussiones Mathematicae Probability and Statistics 33.1-2 (2013): 151-169. <http://eudml.org/doc/271056>.
@article{ManuelL2013,
abstract = {We show that in the delta-normal model there exist perturbations of the Gaussian multivariate distribution of the returns of a portfolio such that the initial marginal distributions of the returns are statistically undistinguishable from the perturbed ones and such that the perturbed V@R is close to the worst possible V@R which, under some reasonable assumptions, is the sum of the V@Rs of each of the portfolio assets.},
author = {Manuel L. Esquível, Luís Dimas, João Tiago Mexia, Philippe Didier},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {Gaussian perturbation; value-at-risk; delta-normal model},
language = {eng},
number = {1-2},
pages = {151-169},
title = {Small perturbations with large effects on value-at-risk},
url = {http://eudml.org/doc/271056},
volume = {33},
year = {2013},
}
TY - JOUR
AU - Manuel L. Esquível
AU - Luís Dimas
AU - João Tiago Mexia
AU - Philippe Didier
TI - Small perturbations with large effects on value-at-risk
JO - Discussiones Mathematicae Probability and Statistics
PY - 2013
VL - 33
IS - 1-2
SP - 151
EP - 169
AB - We show that in the delta-normal model there exist perturbations of the Gaussian multivariate distribution of the returns of a portfolio such that the initial marginal distributions of the returns are statistically undistinguishable from the perturbed ones and such that the perturbed V@R is close to the worst possible V@R which, under some reasonable assumptions, is the sum of the V@Rs of each of the portfolio assets.
LA - eng
KW - Gaussian perturbation; value-at-risk; delta-normal model
UR - http://eudml.org/doc/271056
ER -
References
top- [1] C. Alexander, Value-at-Risk Models (John Wiley & Sons, 2008).
- [2] P. Best, Implementing Value at Risk (John Wiley & Sons, 1998).
- [3] M. Choudry, An Introduction to Value-at-Risk, fourth edition (John Wiley & Sons, 2006).
- [4] L. Dimas, Sobre a Influência de Pequenas Perturbações no Cálculo do 'Value-at-Risk' de uma Carteira de Activos, Master of Science Dissertation, Text in Portuguese (Universidade Nova de Lisboa, 2014).
- [5] P. Embrechts, J. Nešlehová and M. Wüthrich, Additivity properties for value-at-risk under Archimedean dependence and heavy-tailedness, Insurance Math. Econom. 44 (2) (2099) 164-169. doi: 10.1016/j.insmatheco.2005.01.006 Zbl1163.91431
- [6] P. Embrechts, A. Höing and G. Puccetti, Worst VaR scenarios, Insurance Math. Econom. 37 (1) (2005) 115-134. doi: 10.1016/j.insmatheco.2005.01.006 Zbl1102.91064
- [7] P. Embrechts and A. Hing, Extreme VaR scenarios in higher dimensions, Extremes 9 (3) (2006) 177-192. doi: 10.1007/s10687-006-0027-6 Zbl1164.60322
- [8] C.G. Esseen, Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law, Acta Math. 77 (1945) 1-125. doi: 10.1007/BF02392223
- [9] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II (John Wiley & Sons, 1971). Zbl0219.60003
- [10] P. Jorion, Value at Risk, third edition, McGraw-Hill (New York, 2007).
- [11] R. Kaas, Roger J.A. Laeven and Roger B. Nelsen, Worst VaR scenarios with given marginals and measures of association, Insurance Math. Econom. 44 (2) (2009) 146-158. doi: 10.1016/j.insmatheco.2008.12.004 Zbl1162.91417
- [12] Roger J.A. Laeven, Worst VaR scenarios: A remark, Insurance Math. Econom. 44 (2) (2009) 159-163. doi: 10.1016/j.insmatheco.2008.10.006 Zbl1160.91370
- [13] A. McNeil, and R. Frey and P. Embrechts, Quantitative Risk Management (Princeton University Press, 2005). Zbl1089.91037
- [14] M. Mesfioui and J.F. Quessy, Bounds on the value-at-risk for the sum of possibly dependent risks, Insurance Math. Econom. 37 (1) (2005) 135-151. doi: 10.1016/j.insmatheco.2005.03.002 Zbl1115.91032
- [15] W.R. Pestman, Mathematical statistics (Walter de Gruyter & Co, Berlin, 1998). doi: 10.1515/9783110208535 Zbl0911.62001
- [16] R. Rebonato and P. Jäckel, The most general methodology to create a valid correlation matrix for risk management and option pricing purposes, preprint.
- [17] K. Schöttle and R. Werner, Improving the most general methodology to create a valid correlation matrix, in: Risk Analysis IV, Wessex Institute of Technology Press.
- [18] A.N. Shiryaev, Probability (Springer-Verlag, 1996). doi: 10.1007/978-1-4757-2539-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.