Small perturbations with large effects on value-at-risk

Manuel L. Esquível; Luís Dimas; João Tiago Mexia; Philippe Didier

Discussiones Mathematicae Probability and Statistics (2013)

  • Volume: 33, Issue: 1-2, page 151-169
  • ISSN: 1509-9423

Abstract

top
We show that in the delta-normal model there exist perturbations of the Gaussian multivariate distribution of the returns of a portfolio such that the initial marginal distributions of the returns are statistically undistinguishable from the perturbed ones and such that the perturbed V@R is close to the worst possible V@R which, under some reasonable assumptions, is the sum of the V@Rs of each of the portfolio assets.

How to cite

top

Manuel L. Esquível, et al. "Small perturbations with large effects on value-at-risk." Discussiones Mathematicae Probability and Statistics 33.1-2 (2013): 151-169. <http://eudml.org/doc/271056>.

@article{ManuelL2013,
abstract = {We show that in the delta-normal model there exist perturbations of the Gaussian multivariate distribution of the returns of a portfolio such that the initial marginal distributions of the returns are statistically undistinguishable from the perturbed ones and such that the perturbed V@R is close to the worst possible V@R which, under some reasonable assumptions, is the sum of the V@Rs of each of the portfolio assets.},
author = {Manuel L. Esquível, Luís Dimas, João Tiago Mexia, Philippe Didier},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {Gaussian perturbation; value-at-risk; delta-normal model},
language = {eng},
number = {1-2},
pages = {151-169},
title = {Small perturbations with large effects on value-at-risk},
url = {http://eudml.org/doc/271056},
volume = {33},
year = {2013},
}

TY - JOUR
AU - Manuel L. Esquível
AU - Luís Dimas
AU - João Tiago Mexia
AU - Philippe Didier
TI - Small perturbations with large effects on value-at-risk
JO - Discussiones Mathematicae Probability and Statistics
PY - 2013
VL - 33
IS - 1-2
SP - 151
EP - 169
AB - We show that in the delta-normal model there exist perturbations of the Gaussian multivariate distribution of the returns of a portfolio such that the initial marginal distributions of the returns are statistically undistinguishable from the perturbed ones and such that the perturbed V@R is close to the worst possible V@R which, under some reasonable assumptions, is the sum of the V@Rs of each of the portfolio assets.
LA - eng
KW - Gaussian perturbation; value-at-risk; delta-normal model
UR - http://eudml.org/doc/271056
ER -

References

top
  1. [1] C. Alexander, Value-at-Risk Models (John Wiley & Sons, 2008). 
  2. [2] P. Best, Implementing Value at Risk (John Wiley & Sons, 1998). 
  3. [3] M. Choudry, An Introduction to Value-at-Risk, fourth edition (John Wiley & Sons, 2006). 
  4. [4] L. Dimas, Sobre a Influência de Pequenas Perturbações no Cálculo do 'Value-at-Risk' de uma Carteira de Activos, Master of Science Dissertation, Text in Portuguese (Universidade Nova de Lisboa, 2014). 
  5. [5] P. Embrechts, J. Nešlehová and M. Wüthrich, Additivity properties for value-at-risk under Archimedean dependence and heavy-tailedness, Insurance Math. Econom. 44 (2) (2099) 164-169. doi: 10.1016/j.insmatheco.2005.01.006 Zbl1163.91431
  6. [6] P. Embrechts, A. Höing and G. Puccetti, Worst VaR scenarios, Insurance Math. Econom. 37 (1) (2005) 115-134. doi: 10.1016/j.insmatheco.2005.01.006 Zbl1102.91064
  7. [7] P. Embrechts and A. Hing, Extreme VaR scenarios in higher dimensions, Extremes 9 (3) (2006) 177-192. doi: 10.1007/s10687-006-0027-6 Zbl1164.60322
  8. [8] C.G. Esseen, Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law, Acta Math. 77 (1945) 1-125. doi: 10.1007/BF02392223 
  9. [9] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II (John Wiley & Sons, 1971). Zbl0219.60003
  10. [10] P. Jorion, Value at Risk, third edition, McGraw-Hill (New York, 2007). 
  11. [11] R. Kaas, Roger J.A. Laeven and Roger B. Nelsen, Worst VaR scenarios with given marginals and measures of association, Insurance Math. Econom. 44 (2) (2009) 146-158. doi: 10.1016/j.insmatheco.2008.12.004 Zbl1162.91417
  12. [12] Roger J.A. Laeven, Worst VaR scenarios: A remark, Insurance Math. Econom. 44 (2) (2009) 159-163. doi: 10.1016/j.insmatheco.2008.10.006 Zbl1160.91370
  13. [13] A. McNeil, and R. Frey and P. Embrechts, Quantitative Risk Management (Princeton University Press, 2005). Zbl1089.91037
  14. [14] M. Mesfioui and J.F. Quessy, Bounds on the value-at-risk for the sum of possibly dependent risks, Insurance Math. Econom. 37 (1) (2005) 135-151. doi: 10.1016/j.insmatheco.2005.03.002 Zbl1115.91032
  15. [15] W.R. Pestman, Mathematical statistics (Walter de Gruyter & Co, Berlin, 1998). doi: 10.1515/9783110208535 Zbl0911.62001
  16. [16] R. Rebonato and P. Jäckel, The most general methodology to create a valid correlation matrix for risk management and option pricing purposes, preprint. 
  17. [17] K. Schöttle and R. Werner, Improving the most general methodology to create a valid correlation matrix, in: Risk Analysis IV, Wessex Institute of Technology Press. 
  18. [18] A.N. Shiryaev, Probability (Springer-Verlag, 1996). doi: 10.1007/978-1-4757-2539-1 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.