On properties of maximal 1-planar graphs
Dávid Hudák; Tomáš Madaras; Yusuke Suzuki
Discussiones Mathematicae Graph Theory (2012)
- Volume: 32, Issue: 4, page 737-747
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topDávid Hudák, Tomáš Madaras, and Yusuke Suzuki. "On properties of maximal 1-planar graphs." Discussiones Mathematicae Graph Theory 32.4 (2012): 737-747. <http://eudml.org/doc/271067>.
@article{DávidHudák2012,
abstract = {A graph is called 1-planar if there exists a drawing in the plane so that each edge contains at most one crossing. We study maximal 1-planar graphs from the point of view of properties of their diagrams, local structure and hamiltonicity.},
author = {Dávid Hudák, Tomáš Madaras, Yusuke Suzuki},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {1-planar graph; maximal graph},
language = {eng},
number = {4},
pages = {737-747},
title = {On properties of maximal 1-planar graphs},
url = {http://eudml.org/doc/271067},
volume = {32},
year = {2012},
}
TY - JOUR
AU - Dávid Hudák
AU - Tomáš Madaras
AU - Yusuke Suzuki
TI - On properties of maximal 1-planar graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2012
VL - 32
IS - 4
SP - 737
EP - 747
AB - A graph is called 1-planar if there exists a drawing in the plane so that each edge contains at most one crossing. We study maximal 1-planar graphs from the point of view of properties of their diagrams, local structure and hamiltonicity.
LA - eng
KW - 1-planar graph; maximal graph
UR - http://eudml.org/doc/271067
ER -
References
top- [1] R. Diestel, Graph Theory (Springer, 2006).
- [2] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs Combin. 13 (1997) 245-250. Zbl0891.05025
- [3] I. Fabrici and T. Madaras, The structure of 1-planar graphs, Discrete Math. 307 (2007) 854-865, doi: 10.1016/j.disc.2005.11.056. Zbl1111.05026
- [4] D. Hudák: Štrukt'ura 1-planárnych grafov, Master Thesis, P.J. Šafárik University, Košice, 2009.
- [5] V. P. Korzhik, Minimal non-1-planar graphs, Discrete Math. 308 (2008) 1319-1327, doi: 10.1016/j.disc.2007.04.009. Zbl1132.05014
- [6] V. P. Korzhik and B. Mohar, Minimal obstructions for 1-immersions and hardness of 1-planarity testing, Springer Lecture Notes in Computer Science 5417 (2009) 302-312, doi: 10.1007/978-3-642-00219-9_29. Zbl1213.05055
- [7] B. Mohar, Light paths in 4-connected graphs in the plane and other surfaces, J. Graph Theory 34 (2000) 170-179, doi: 10.1002/1097-0118(200006)34:2<170::AID-JGT6>3.0.CO;2-P
- [8] J.W. Moon and L. Moser, On hamiltonian bipartite graphs, Israel J. Math 1 (1963) 163-165, doi: 10.1007/BF02759704. Zbl0119.38806
- [9] J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica 17 (1997) 427-439, doi: 10.1007/BF01215922. Zbl0902.05017
- [10] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg 29 (1965) 107p-117, doi: 10.1007/BF02996313. Zbl0132.20701
- [11] T. Kaiser, D. Král, M. Rosenfeld, Z. Ryjáček and H.-J. Voss: Hamilton cycles in prisms over graphs, http://cam.zcu.cz/∼ryjacek/publications/files/60.pdf. Zbl1128.05034
- [12] Y. Suzuki, Re-embeddings of maximum 1-planar graphs, SIAM J. Discrete Math. 24 (2010) 1527-1540, doi: 10.1137/090746835. Zbl1221.05099
- [13] W. T. Tutte, A theorem on planar graphs, Trans. Am. Math. Soc. 82 (1956) 99-116, doi: 10.1090/S0002-9947-1956-0081471-8. Zbl0070.18403
- [14] H. Whitney, A theorem on graphs, Ann. Math. 32 (1931) 378-?390, doi: 10.2307/1968197.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.