## Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

### Light edges in 1-planar graphs with prescribed minimum degree

Discussiones Mathematicae Graph Theory

A graph is called 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. We prove that each 1-planar graph of minimum degree δ ≥ 4 contains an edge with degrees of its endvertices of type (4, ≤ 13) or (5, ≤ 9) or (6, ≤ 8) or (7,7). We also show that for δ ≥ 5 these bounds are best possible and that the list of edges is minimal (in the sense that, for each of the considered edge types there are 1-planar graphs whose set of types of edges contains just the...

### On local structure of 1-planar graphs of minimum degree 5 and girth 4

Discussiones Mathematicae Graph Theory

A graph is 1-planar if it can be embedded in the plane so that each edge is crossed by at most one other edge. We prove that each 1-planar graph of minimum degree 5 and girth 4 contains (1) a 5-vertex adjacent to an ≤ 6-vertex, (2) a 4-cycle whose every vertex has degree at most 9, (3) a ${K}_{1,4}$ with all vertices having degree at most 11.

### On properties of maximal 1-planar graphs

Discussiones Mathematicae Graph Theory

A graph is called 1-planar if there exists a drawing in the plane so that each edge contains at most one crossing. We study maximal 1-planar graphs from the point of view of properties of their diagrams, local structure and hamiltonicity.

Page 1