Discrete approximations of generalized RBSDE with random terminal time
Discussiones Mathematicae Probability and Statistics (2012)
- Volume: 32, Issue: 1-2, page 69-85
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topKatarzyna Jańczak-Borkowska. "Discrete approximations of generalized RBSDE with random terminal time." Discussiones Mathematicae Probability and Statistics 32.1-2 (2012): 69-85. <http://eudml.org/doc/271072>.
@article{KatarzynaJańczak2012,
abstract = {The convergence of discrete approximations of generalized reflected backward stochastic differential equations with random terminal time in a general convex domain is studied. Applications to investigation obstacle elliptic problem with Neumann boundary condition for partial differential equations are given.},
author = {Katarzyna Jańczak-Borkowska},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {generalized reflected BSDE; discrete approximation methods; viscosity solution; reflected backward stochastic differential equations; discrete approximations},
language = {eng},
number = {1-2},
pages = {69-85},
title = {Discrete approximations of generalized RBSDE with random terminal time},
url = {http://eudml.org/doc/271072},
volume = {32},
year = {2012},
}
TY - JOUR
AU - Katarzyna Jańczak-Borkowska
TI - Discrete approximations of generalized RBSDE with random terminal time
JO - Discussiones Mathematicae Probability and Statistics
PY - 2012
VL - 32
IS - 1-2
SP - 69
EP - 85
AB - The convergence of discrete approximations of generalized reflected backward stochastic differential equations with random terminal time in a general convex domain is studied. Applications to investigation obstacle elliptic problem with Neumann boundary condition for partial differential equations are given.
LA - eng
KW - generalized reflected BSDE; discrete approximation methods; viscosity solution; reflected backward stochastic differential equations; discrete approximations
UR - http://eudml.org/doc/271072
ER -
References
top- [1] V. Bally, Approximation scheme for solutions of BSDE, Pitman Res. Notes Math. Ser. 364 Longman Harlow (1997) 177-191. Zbl0889.60068
- [2] V. Bally and G. Pages, Error analysis of the optimal quantization algorithm for obstacle problems, Stochastic Process. Appl. 106 (1) (2003) 1-40. doi: 10.1016/S0304-4149(03)00026-7. Zbl1075.60523
- [3] P. Briand, B. Delyon and J. Mémin, Donsker-Type theorem for BSDEs, Elect. Comm. in Probab. 6 (2001) 1-14. Zbl0977.60067
- [4] P. Briand, B. Delyon and J. Mémin, On the robustness of backward stochastic diffrential equations, Stochastic Process. Appl. 97 (2002) 229-253. doi: 10.1016/S0304-4149(01)00131-4. Zbl1058.60041
- [5] A. Gegout-Petit and É. Pardoux, Equations diffréntielles stochastiques rétrogrades réfléchies dans un convexe, Stoch. Stoch. Rep. 57 (1996) 111-128. Zbl0891.60050
- [6] K. Jańczak, Discrete approximations of reflected backward stochastic differential equations with random terminal time, Probab. Math. Statistics 28 (2008) 41-74. Zbl1147.60036
- [7] K. Jańczak, Generalized reflected backward stochastic differential equations, Stochastics 81 (2009) 147-170. doi: 10.1080/17442500802299007. Zbl1165.60327
- [8] K. Jańczak-Borkowska, Generalized RBSDE with random terminal time, Bull. Polish Acad. Sci. Math. 59 (2011) 85-100. doi: 10.4064/ba59-1-10.
- [9] P.L. Lions and A.S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. (1984) 511-537. Zbl0598.60060
- [10] J. Ma, P. Protter, J. San Martin and S. Torres, Numerical method for backward stochastic differential equations, Ann. Appl. Probab. 12 (2002) 302-316. doi: 10.1214/aoap/1015961165. Zbl1017.60074
- [11] J. Ma and J. Zhang, Representation and regularities for solutions to BSDEs with reflections, Stochastic Process. Appl. 115 (2005) 539-569. doi: 10.1016/j.spa.2004.05.010. Zbl1076.60049
- [12] J.L. Menaldi, Stochastic variational inequality for reflected diffusion, Indiana Univ. Math. Journal 32 (1983) 733-744. doi: 10.1512/iumj.1983.32.32048. Zbl0492.60057
- [13] É. Pardoux and S. Peng, Adapted solutions of a backward stochastic differential equation, Systems Control Lett. 14 (1990) 55-61. doi: 10.1016/0167-6911(90)90082-6. Zbl0692.93064
- [14] É. Pardoux and A. Răşcanu, Backward stochastic differential equations with subdifferential operator and related variational inequalities, Stochastic Process. Appl. 76 (1998) 191-215. doi: 10.1016/S0304-4149(98)00030-1. Zbl0932.60070
- [15] É. Pardoux and S. Zhang, Generalized BSDEs and nonlinear Neumann boundary value problems, Probab. Theory Relat. Fields 110 (1998) 535-558. doi: 10.1007/s004400050158. Zbl0909.60046
- [16] Y. Ren and N. Xia, Generalized reflected BSDE and an obstacle problem for PDEs with a nonlinear Neumann boundary condition, Stochastic Analysis and Applications 24 (2006) 1-21. doi: 10.1080/07362990600870454. Zbl1122.60055
- [17] L. Słomiński, Euler's approximations of solutions of SDE's with reflecting boundary, Stochastic Process. Appl. 94 (2001) 317-337. doi: 10.1016/S0304-4149(01)00087-4. Zbl1053.60062
- [18] S. Toldo, Stability of solutions of BSDEs with random terminal time, SAIM Probab. Stat. 10 (2006) 141-163. doi: 10.1051/ps:2006006. Zbl1185.60064
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.