On useful schema in survival analysis after heart attack

Czesław Stępniak

Discussiones Mathematicae Probability and Statistics (2014)

  • Volume: 34, Issue: 1-2, page 63-69
  • ISSN: 1509-9423

Abstract

top
Recent model of lifetime after a heart attack involves some integer coefficients. Our goal is to get these coefficients in simple way and transparent form. To this aim we construct a schema according to a rule which combines the ideas used in the Pascal triangle and the generalized Fibonacci and Lucas numbers

How to cite

top

Czesław Stępniak. "On useful schema in survival analysis after heart attack." Discussiones Mathematicae Probability and Statistics 34.1-2 (2014): 63-69. <http://eudml.org/doc/271078>.

@article{CzesławStępniak2014,
abstract = {Recent model of lifetime after a heart attack involves some integer coefficients. Our goal is to get these coefficients in simple way and transparent form. To this aim we construct a schema according to a rule which combines the ideas used in the Pascal triangle and the generalized Fibonacci and Lucas numbers},
author = {Czesław Stępniak},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {lifetime after heart attack; distribution; Fibonacci number; Lucas number; Pascal triangle},
language = {eng},
number = {1-2},
pages = {63-69},
title = {On useful schema in survival analysis after heart attack},
url = {http://eudml.org/doc/271078},
volume = {34},
year = {2014},
}

TY - JOUR
AU - Czesław Stępniak
TI - On useful schema in survival analysis after heart attack
JO - Discussiones Mathematicae Probability and Statistics
PY - 2014
VL - 34
IS - 1-2
SP - 63
EP - 69
AB - Recent model of lifetime after a heart attack involves some integer coefficients. Our goal is to get these coefficients in simple way and transparent form. To this aim we construct a schema according to a rule which combines the ideas used in the Pascal triangle and the generalized Fibonacci and Lucas numbers
LA - eng
KW - lifetime after heart attack; distribution; Fibonacci number; Lucas number; Pascal triangle
UR - http://eudml.org/doc/271078
ER -

References

top
  1. [1] H. Belbachir and A. Benmezai, An alternative approach to Cigler's q-Lucas polynomials, Appl. Math. Computat. 226 (2014) 691-698. doi: 10.1016/j.amc.2013.10.009 Zbl1294.11013
  2. [2] G.B. Diordjević, Generating functions of the incomplete generalized Fibonacci and generalized Lucas numbers, Fibonacci Quart. 39 (2004) 106-113. 
  3. [3] A. Dil and I. Mező, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput. 206 (2008) 942-951. doi: 10.1016/j.amc.2008.10.013 
  4. [4] M. El-Mikkawy and T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461. doi: 10.1016/j.amc.2009.12.069 Zbl1193.11012
  5. [5] X. Fu and X. Zhou, On matrices related with Fibonacci and Lucas numbers, Appl. Math. Comput. 200 (2008) 96-100. doi: 10.1016/j.amc.2007.10.060 Zbl1143.15014
  6. [6] D. Garth, D. Mills and P. Mitchell, Polynomials generated by the Fibonacci sequence, J. Integer. Seq. 10 (2007), Article 07.6.8. Zbl1142.11012
  7. [7] H.H. Gulec, N. Taskara and K. Uslu, A new approach to generalized Fibonacci and Lucas numbers with binomial coefficients, Appl. Math. Comput. 230 (2013) 482-486. doi: 10.1016/j.amc.2013.05.043 Zbl1329.11015
  8. [8] J.M. Gutiérrez, M.A. Hernández, P.J. Miana and N. Romero, New identities in the Catalan triangle, J. Math. Anal. Appl. 341 (2008) 52-61. doi: 10.1016/j.jmaa.2007.09.073 Zbl1147.05003
  9. [9] P. Hao and S. Zhi-wei, A combinatorial identity with application to Catalan numbers, Discrete Math. 306 (2006) 1921-1940. doi: 10.1016/j.disc.2006.03.050 
  10. [10] V.E. Hoggat Jr., Fibonacci and Lucas Numbers, Houghton Miffin (Boston, MA, 1969). 
  11. [11] H. Hosoya, Fibonacci triangle, Fibonacci Quart. 14 (1976) 173-178. 
  12. [12] B.D. Jones, Comprehensive Medical Terminology, Third Ed. Delmar Publishers (Albany NY, 2008). 
  13. [13] S. Kitaev and J. Liese, Harmonic numbers, Catalan's triangle and mesh patterns, Discrete Math. 313 (2013) 1515-1531. doi: 10.1016/j.disc.2013.03.017 Zbl06247759
  14. [14] E.G. Kocer and N. Touglu, The Binet formulas for the Pell-Lucas p-numbers, Ars Combinatoria 85 (2007) 3-18. Zbl1204.11026
  15. [15] T. Koshy, Fibonacci and Lucas Numbers with Applications (Wiley-Interscience, New York, 2001). doi: 10.1002/9781118033067 
  16. [16] T. Koshy, Fibonacci, Lucas, and Pell numbers, and Pascal's triangle, Math. Spectrum 43 (2011) 125-132. 
  17. [17] H. Kwong, Two determinants with Fibonacci ad Lucas entries, Appl. Math. Comput. 194 (2007) 568-571. doi: 10.1016/j.amc.2007.04.027 Zbl1193.11026
  18. [18] S.-M. Ma, Identities involving generalized Fibonacci-type polynomials, Appl. Math. Comput. 217 (2011) 9297-9301. doi: 10.1016/j.amc.2011.04.012 Zbl1220.11021
  19. [19] L. Niven, H. Zuckerman and H. Montgomery, An Introduction to the Theory of Numbers, Fifth Ed. (Wiley, New York, 1991). Zbl0742.11001
  20. [20] J. Petronilho, Generalized Fibonacci sequences via orthogonal polynomials, Appl. Mat. Comput. 218 (2012) 9819-9824. doi: 10.1016/j.amc.2012.03.053 Zbl1271.11019
  21. [21] L.W. Shapiro, A Catalan triangle, Discrete Math. 14 (1976) 83-90. doi: 10.1016/0012-365X(76)90009-1 
  22. [22] N. Sloane, On-Line Encyclopedia of Integer Sequences (OEIS), http;//oeis.org. Zbl1274.11001
  23. [23] S. Stanimirović, Some identities on Catalan numbers and hypergeometric functions via Catalan matrix power, Appl. Math. Comput. 217 (2011) 9122-9132. doi: 10.1016/j.amc.2011.03.138 Zbl1222.15035
  24. [24] S. Stanimirović, P. Stanimirović, M. Miladinović and A. Ilić, Catalan matrix and related combinatorial identities, Appl. Math. Comput. 215 (2009) 796-805. doi: 10.1016/j.amc.2009.06.003 Zbl1175.05018
  25. [25] C. Stępniak, On distribution of waiting time for the first failure followed by a limited length success run, Appl. Math. (Warsaw) (2013) 421-430. doi: 10.4064/am40-4-3 Zbl1281.62237
  26. [26] N. Tuglu, E.G. Kocer and A. Stakhov, Bivariate fibonacci like p-polynomials, Appl. Math. Comput. 217 (2011) 10239-10246. doi: 10.1016/j.amc.2011.05.022 Zbl1246.11038
  27. [27] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Ellis Horwood (Chichester 1989). 
  28. [28] N.N. Vorobyov, Fibonacci Numbers, Publishing House 'Nauka', Moscow, 1961 (in Russian). 
  29. [29] A. Włoch, Some identities for the generalized Fibonacci numbers and the generalized Lucas numbers, Appl. Math. Comput. 219 (2013) 5564-5568. doi: 10.1016/j.amc.2012.11.030 Zbl1283.11037
  30. [30] O. Yayenie, A note on generalized Fibonacci sequences, Appl. Math. Comput. 217 (2011) 5603-5611. doi: 10.1016/j.amc.2010.12.038 Zbl1226.11023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.