Monotonic solutions for quadratic integral equations

Mieczysław Cichoń; Mohamed M.A. Metwali

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2011)

  • Volume: 31, Issue: 2, page 157-171
  • ISSN: 1509-9407

Abstract

top
Using the Darbo fixed point theorem associated with the measure of noncompactness, we establish the existence of monotonic integrable solution on a half-line ℝ₊ for a nonlinear quadratic functional integral equation.

How to cite

top

Mieczysław Cichoń, and Mohamed M.A. Metwali. "Monotonic solutions for quadratic integral equations." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 31.2 (2011): 157-171. <http://eudml.org/doc/271149>.

@article{MieczysławCichoń2011,
abstract = {Using the Darbo fixed point theorem associated with the measure of noncompactness, we establish the existence of monotonic integrable solution on a half-line ℝ₊ for a nonlinear quadratic functional integral equation.},
author = {Mieczysław Cichoń, Mohamed M.A. Metwali},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {integral equation; monotonic solution; measure of noncompactness; Darbo fixed point theorem; superposition operator},
language = {eng},
number = {2},
pages = {157-171},
title = {Monotonic solutions for quadratic integral equations},
url = {http://eudml.org/doc/271149},
volume = {31},
year = {2011},
}

TY - JOUR
AU - Mieczysław Cichoń
AU - Mohamed M.A. Metwali
TI - Monotonic solutions for quadratic integral equations
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2011
VL - 31
IS - 2
SP - 157
EP - 171
AB - Using the Darbo fixed point theorem associated with the measure of noncompactness, we establish the existence of monotonic integrable solution on a half-line ℝ₊ for a nonlinear quadratic functional integral equation.
LA - eng
KW - integral equation; monotonic solution; measure of noncompactness; Darbo fixed point theorem; superposition operator
UR - http://eudml.org/doc/271149
ER -

References

top
  1. [1] G. Anichini and G. Conti, Existence of solutions of some quadratic integral equations, Opuscula Mathematica 28 (2008), 433-440. doi: 10.7151/dmdico.1132 Zbl1165.45003
  2. [2] J. Appell and P.P. Zabrejko, Continuity properties of the superposition operator, Preprint No. 131, Univ. Augsburg, 1986. Zbl0683.47045
  3. [3] I.K. Argyros, Quadratic equations and applications to Chandrasekhar's and related equations, Bull. Austral. Math. Soc. 32 (1985), 275-292. doi: 10.1017/S0004972700009953 Zbl0607.47063
  4. [4] J. Banaś, On the superposition operator and integrable solutions of some functional equations, Nonlin. Anal. Th. Meth. Appl. 12 (1988), 777-784. doi: 10.1016/0362-546X(88)90038-7 
  5. [5] J. Banaś, Integrable solutions of Hammerstein and Urysohn integral equations, J. Autral. Math. Soc. 46 (1989), 61-68. doi: 10.1017/S1446788700030378 Zbl0666.45008
  6. [6] J. Banaś and A. Chlebowicz, On integrable solutions of a nonlinear Volterra integral equation under Carathéodory conditions, Bull. London Math. Soc. 41 (2009), 1073-1084. Zbl1191.47087
  7. [7] J. Banaś and W.G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl. 167 (1992), 133-151. doi: 10.1016/0022-247X(92)90241-5 Zbl0754.45008
  8. [8] J. Banaś and W.G. El-Sayed, Solvability of Functional and Integral Equations in some Classes of Integrable Functions, Politechnika Rzeszowska, Rzeszów, 1993. 
  9. [9] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lect. Notes in Math. 60, M. Dekker, New York-Basel, 1980. Zbl0441.47056
  10. [10] J. Banaś, J. Rocha and K.B. Sadarangani, Solvability of a nonlinear integral equation of Volterra type, J. Comp. Appl. Math. 157 (2003), 31-48. doi: 10.1016/S0377-0427(03)00373-X Zbl1026.45006
  11. [11] J. Banaś and B. Rzepka, On existence and asymptotic stability of a nonlinear integral equation, J. Math. Anal. Appl. 284 (2003), 165-173. empty Zbl1029.45003
  12. [12] J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 332 (2007), 1371-1379. doi: 10.1016/j.jmaa.2006.11.008 Zbl1123.45001
  13. [13] J. Banaś and B. Rzepka, Nondecreasing solutions of a quadratic singular Volterra integral equation, Math. Comp. Model. 49 (2009), 488-496. doi: 10.1016/j.mcm.2007.10.021 Zbl1165.45301
  14. [14] J. Banaś, M. Lecko and W.G. El-Sayed, Existence theorems of some quadratic integral equations, J. Math. Anal. Appl. 222 (1998), 276-285. doi: 10.1006/jmaa.1998.5941 Zbl0913.45001
  15. [15] J. Banaś and T. Zając, Solvability of a functional integral equation of fractional order in the class of functions having limits at infinity, Nonlin. Anal. Th. Meth. Appl. 71 (2009), 5491-5500. doi: 10.1016/j.na.2009.04.037 Zbl1181.45010
  16. [16] J. Banaś and L. Olszowy, Measures of noncompactness related to monotonicity, Comment. Math. 41 (2001), 13-23. Zbl0999.47041
  17. [17] J. Caballero, A.B. Mingarelli and K. Sadarangani, Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer, Electr. J. Differ. Equat. 57 (2006), 1-11. Zbl1113.45004
  18. [18] S. Chandrasekhar, Radiative Transfer, Dover Publications, New York, 1960. 
  19. [19] G. Darbo, Punti uniti in trasformazioni a codominio noncompatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92. Zbl0064.35704
  20. [20] M.A. Darwish, On solvability of some quadratic functional-integral equation in Banach algebra, Commun. Appl. Anal. 11 (2007), 441-450. Zbl1137.45004
  21. [21] M.A. Darwish and J. Henderson, Existence and asymptotic stability of solutions of a perturbed quadratic fractional integral equations, Fract. Calculus Appl. Anal. 12 (2009), 71-86. Zbl1181.45014
  22. [22] M.A. Darwish and S.K. Ntouyas, Monotonic solutions of a perturbed quadratic fractional integral equation, Nonlin. Anal. Th. Meth. Appl. 71 (2009), 5513-5521. doi: 10.1016/j.na.2009.04.041 Zbl1177.45004
  23. [23] N. Dunford and J. Schwartz, Linear Operators I, Int. Publ., Leyden, 1963. 
  24. [24] W.G. El-Sayed and B. Rzepka, Nondecreasing solutions of a quadratic integral equation of Urysohn type, Comp. Math. Appl. 51 (2006), 1065-1074. doi: 10.1016/j.camwa.2005.08.033 Zbl1134.45004
  25. [25] S. Hu, M. Khavani and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Analysis 34 (1989), 261-266. doi: 10.1080/00036818908839899 Zbl0697.45004
  26. [26] M.A. Krasnosel'skii, P.P. Zabrejko, J.I. Pustyl'nik and P.E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Noordhoff, Leyden, 1976. 
  27. [27] M. Väth, A general theorem on continuity and compactness of the Urysohn operator, J. Integral Equations Appl. 8 (1996), 379-389. doi: 10.1216/jiea/1181075958 Zbl0872.45010
  28. [28] M. Väth, Continuity of single- and multivalued superposition operators in generalized ideal spaces of measurable functions, Nonlin. Funct. Anal. Appl. 11 (2006), 607-646. Zbl1119.47060
  29. [29] M. Väth, Volterra and Integral Equations of Vector Functions, Marcel Dekker, New York-Basel, 2000. 
  30. [30] P.P. Zabrejko, A.I. Koshlev, M.A. Krasnosel'skii, S.G. Mikhlin, L.S. Rakovshchik and V.J. Stecenko, Integral Equations, Noordhoff, Leyden, 1975. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.