Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems
Martin Kahlbacher; Stefan Volkwein
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2007)
- Volume: 27, Issue: 1, page 95-117
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H.W. Alt, Lineare Funktionalanalysis. Eine anwendungsorientierte Einführung, Springer-Verlag, Berlin 1992.
- [2] J.A. Atwell and B.B. King, Reduced order controllers for spatially distributed systems via proper orthogonal decomposition, SIAM Journal Scientific Computation, to appear.
- [3] H.T. Banks, M.L. Joyner, B. Winchesky and W.P. Winfree, Nondestructive evaluation using a reduced-order computational methodology, Inverse Problems 16 (2000), 1-17. Zbl0960.35107
- [4] M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C.R. Acad. Sci. Paris, Ser. I 339 (2004), 667-672. Zbl1061.65118
- [5] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, Rhode Island 1998. Zbl0902.35002
- [6] K. Fukuda, Introduction to Statistical Recognition, Academic Press, New York 1990.
- [7] M.D. Gunzburger, L. Hou and T.P. Svobodny, Finite element approximations of an optimal control problem associated with the scalar Ginzburg-Landau equation, Computers Math. Applic. 21 (1991), 123-131. Zbl0723.65043
- [8] M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition, to appear in Computational Optimization and Applications.
- [9] P. Holmes, J.L. Lumley and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics, Cambridge University Press 1996. Zbl0890.76001
- [10] C. Homescu, L.R. Petzold and R. Serban, Error estimation for reduced order models of dynamical systems, SIAM J. Numer. Anal. 43 (2005), 1693-1714. Zbl1096.65076
- [11] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin 1980. Zbl0435.47001
- [12] K. Kunisch and S. Volkwein, Control of Burgers' equation by a reduced order approach using proper orthogonal decomposition, J. Optimization Theory and Applications 102 (1999), 345-371. Zbl0949.93039
- [13] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik 90 (2001), 117-148. Zbl1005.65112
- [14] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM Journal on Numerical Analysis 40 (2002), 492-515. Zbl1075.65118
- [15] S. Lall, J.E. Marsden and S. Glavaski, Empirical model reduction of controlled nonlinear systems, in: Proceedings of the IFAC Congress, vol. F (1999), 473-478.
- [16] H.V. Ly and H.T. Tran, Modelling and control of physical processes using proper orthogonal decomposition, Mathematical and Computer Modeling 33 (2001), 223-236. Zbl0966.93018
- [17] L. Machiels, Y. Maday and A.T. Patera, Output bounds for reduced-order approximations of elliptic partial differential equations, Comput. Methods Appl. Mech. Engrg. 190 (2001), 3413-3426. Zbl0984.65118
- [18] Y. Maday and E.M. Rønquist, A reduced-basis element method, Journal of Scientific Computing 17 (2002), 1-4. Zbl1014.65119
- [19] M. Rathinam and L. Petzold, Dynamic iteration using reduced order models: a method for simulation of large scale modular systems, SIAM J. Numer. Anal. 40 (2002), 1446-1474. Zbl1033.65056
- [20] C.W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition, Int. J. on Bifurcation and Chaos 15 (2005), 997-1013. Zbl1140.76443
- [21] L. Sirovich, Turbulence and the dynamics of coherent structures, parts I-III, Quarterly of Applied Mathematics XLV (1987), 561-590. Zbl0676.76047
- [22] S. Volkwein, Boundary control of the Burgers equation: optimality conditions and reduced-order approach, in: K.-H. Hoffmann, I. Lasiecka, G. Leugering, J. Sprekels and F. Tröltzsch, eds, Optimal Control of Complex Structures, International Series of Numerical Mathematics 139 (2001), 267-278.
- [23] K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition, AIAA (2001), 2001-2611.
Citations in EuDML Documents
top- Dominique Chapelle, Asven Gariah, Jacques Sainte-Marie, Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples
- Dominique Chapelle, Asven Gariah, Jacques Sainte-Marie, Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples
- Dominique Chapelle, Asven Gariah, Jacques Sainte-Marie, Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples