Penalties, Lagrange multipliers and Nitsche mortaring

Christian Grossmann

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2010)

  • Volume: 30, Issue: 2, page 205-220
  • ISSN: 1509-9407

Abstract

top
Penalty methods, augmented Lagrangian methods and Nitsche mortaring are well known numerical methods among the specialists in the related areas optimization and finite elements, respectively, but common aspects are rarely available. The aim of the present paper is to describe these methods from a unifying optimization perspective and to highlight some common features of them.

How to cite

top

Christian Grossmann. "Penalties, Lagrange multipliers and Nitsche mortaring." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 30.2 (2010): 205-220. <http://eudml.org/doc/271158>.

@article{ChristianGrossmann2010,
abstract = {Penalty methods, augmented Lagrangian methods and Nitsche mortaring are well known numerical methods among the specialists in the related areas optimization and finite elements, respectively, but common aspects are rarely available. The aim of the present paper is to describe these methods from a unifying optimization perspective and to highlight some common features of them.},
author = {Christian Grossmann},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {augmented Lagrangian; penalty method; domain decomposition; Nitsche mortaring; finite elements},
language = {eng},
number = {2},
pages = {205-220},
title = {Penalties, Lagrange multipliers and Nitsche mortaring},
url = {http://eudml.org/doc/271158},
volume = {30},
year = {2010},
}

TY - JOUR
AU - Christian Grossmann
TI - Penalties, Lagrange multipliers and Nitsche mortaring
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2010
VL - 30
IS - 2
SP - 205
EP - 220
AB - Penalty methods, augmented Lagrangian methods and Nitsche mortaring are well known numerical methods among the specialists in the related areas optimization and finite elements, respectively, but common aspects are rarely available. The aim of the present paper is to describe these methods from a unifying optimization perspective and to highlight some common features of them.
LA - eng
KW - augmented Lagrangian; penalty method; domain decomposition; Nitsche mortaring; finite elements
UR - http://eudml.org/doc/271158
ER -

References

top
  1. [1] R.A. Adams, Sobolev spaces (Academic Press, Inc., 1975). 
  2. [2] R. Becker, P. Hansbo and R. Stenberg, A finite element method for domain decomposition with non-matching grids, Math. Model. Numer. Anal. 37 (2003), 209-225. doi: 10.1051/m2an:2003023 Zbl1047.65099
  3. [3] P.G. Ciarlet, The finite element method for elliptic problems (North-Holland Publ. Co., Amsterdam 1978). Zbl0383.65058
  4. [4] L.C. Evans, Partial differential equations (AMS Publ. Providence, 1998). 
  5. [5] C. Grossmann, Dualität und Strafmethoden bei elliptischen Differentialgleichungen, Z. Angew. Math. Mech. 64 (1984), 111-121. doi: 10.1002/zamm.19840640206 Zbl0537.49019
  6. [6] C. Grossmann and A. Kaplan, Strafmethoden und modifizierte Lagrange Funktionen in der nichtlinearen Optimierung (Teubner, 1979). Zbl0425.65035
  7. [7] C. Grossmann, H.-G. Roos and M. Stynes, Numerical treatment of partial differential equations (Springer, Berlin, 2007). Zbl1180.65147
  8. [8] K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications (SIAM Publ., 2008). doi: 10.1137/1.9780898718614 Zbl1156.49002
  9. [9] A. Kaplan and R. Tichatschke, Stable methods for ill-posed variational problems: prox-regularization of elliptic variational inequalities and semi-infinite problems (Akademie Verlag, Berlin 1994). Zbl0804.49011
  10. [10] B. Riviére, Discontinuous Galerkin methods for solving elliptic and parabolic equations (SIAM Publ., 2008). doi: 10.1137/1.9780898717440 Zbl1153.65112
  11. [11] P. Le Tallec and T. Sassi, Domain decomposition with nonmatching grids: Augmented Lagrangian approach, Math. Comput. 64 (1995), 1367-1396. Zbl0849.65087
  12. [12] A. Toselli and O. Widlund, Domain decomposition methods - algorithms and theory (Springer, 2005). Zbl1069.65138
  13. [13] F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen. Theorie, Verfahren und Anwendungen (Vieweg, Wiesbaden, 2005). 
  14. [14] B.I. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal. 38 (2000), 989-1012. doi: 10.1137/S0036142999350929 Zbl0974.65105

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.