Boundary value problems for differential inclusions with fractional order

Mouffak Benchohra; Samira Hamani

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2008)

  • Volume: 28, Issue: 1, page 147-164
  • ISSN: 1509-9407

Abstract

top
In this paper, we shall establish sufficient conditions for the existence of solutions for a boundary value problem for fractional differential inclusions. Both cases of convex valued and nonconvex valued right hand sides are considered.

How to cite

top

Mouffak Benchohra, and Samira Hamani. "Boundary value problems for differential inclusions with fractional order." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 28.1 (2008): 147-164. <http://eudml.org/doc/271160>.

@article{MouffakBenchohra2008,
abstract = {In this paper, we shall establish sufficient conditions for the existence of solutions for a boundary value problem for fractional differential inclusions. Both cases of convex valued and nonconvex valued right hand sides are considered.},
author = {Mouffak Benchohra, Samira Hamani},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {differential inclusion; Caputo fractional derivative; fractional integral; existence; fixed point},
language = {eng},
number = {1},
pages = {147-164},
title = {Boundary value problems for differential inclusions with fractional order},
url = {http://eudml.org/doc/271160},
volume = {28},
year = {2008},
}

TY - JOUR
AU - Mouffak Benchohra
AU - Samira Hamani
TI - Boundary value problems for differential inclusions with fractional order
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2008
VL - 28
IS - 1
SP - 147
EP - 164
AB - In this paper, we shall establish sufficient conditions for the existence of solutions for a boundary value problem for fractional differential inclusions. Both cases of convex valued and nonconvex valued right hand sides are considered.
LA - eng
KW - differential inclusion; Caputo fractional derivative; fractional integral; existence; fixed point
UR - http://eudml.org/doc/271160
ER -

References

top
  1. [1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984. Zbl0538.34007
  2. [2] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990. 
  3. [3] A. Belarbi, M. Benchohra, S. Hamani and S.K. Ntouyas, Perturbed functional differential equations with fractional order, Commun. Appl. Anal. 11 (3-4) (2007), 429-440. Zbl1148.34042
  4. [4] A. Belarbi, M. Benchohra and A. Ouahab, Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces, Appl. Anal. 85 (2006), 1459-1470. Zbl1175.34080
  5. [5] M. Benchohra, S. Hamani and S.K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl. 3 (2008), 1-12. Zbl1157.26301
  6. [6] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2) (2008), 1340-1350. Zbl1209.34096
  7. [7] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. 
  8. [8] H. Covitz and S. B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11. Zbl0192.59802
  9. [9] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992. 
  10. [10] D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996), 609-625. Zbl0881.34005
  11. [11] K. Diethelm and A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in: 'Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties' (F. Keil, W. Mackens, H. Voss and J. Werther, Eds), pp. 217-224, Springer-Verlag, Heidelberg, 1999. 
  12. [12] K. Diethelm and N.J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248. Zbl1014.34003
  13. [13] K. Diethelm and G. Walz, Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms 16 (1997), 231-253. Zbl0926.65070
  14. [14] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. Zbl1025.47002
  15. [15] A.M.A. El-Sayed, Fractional order evolution equations, J. Fract. Calc. 7 (1995), 89-100. 
  16. [16] A.M.A. El-Sayed, Fractional order diffusion-wave equations, Intern. J. Theoretical Physics 35 (1996), 311-322. 
  17. [17] A.M.A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (1998), 181-186. Zbl0934.34055
  18. [18] A.M.A. El-Sayed and A.G. Ibrahim, Multivalued fractional differential equations, Appl. Math. Comput. 68 (1995), 15-25. Zbl0830.34012
  19. [19] L. Gaul, P. Klein and S. Kempfle, Damping description involving fractional operators, Mech. Systems Signal Processing 5 (1991), 81-88. 
  20. [20] W.G. Glockle and T.F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995), 46-53. 
  21. [21] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I, Kluwer, Dordrecht, 1997. 
  22. [22] N. Heymans and I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheologica Acta 45 (5) (2006), 765-772. 
  23. [23] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. Zbl0998.26002
  24. [24] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991. 
  25. [25] A.A. Kilbas and S.A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), 84-89. Zbl1160.34301
  26. [26] A.A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. Zbl1092.45003
  27. [27] V. Lakshmikantham and J.V. Devi, Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math. 1 (1) (2008), 38-45. Zbl1146.34042
  28. [28] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in: 'Fractals and Fractional Calculus in Continuum Mechanics' (A. Carpinteri and F. Mainardi, Eds), pp. 291-348, Springer-Verlag, Wien, 1997. Zbl0917.73004
  29. [29] F. Metzler, W. Schick, H.G. Kilian and T.F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186. 
  30. [30] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. Zbl0789.26002
  31. [31] K.B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, London, 1974. Zbl0292.26011
  32. [32] A. Ouahab, Some results for fractional boundary value problem of differential inclusions, Nonlinear Anal. (2007), doi:10.1016/j.na.2007.10.021. Zbl1169.34006
  33. [33] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. 
  34. [34] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calculus Appl. Anal. 5 (2002), 367-386. Zbl1042.26003
  35. [35] I. Podlubny, I. Petraš, B.M. Vinagre, P. O'Leary and L. Dorčak, Analogue realizations of fractional-order controllers. Fractional order calculus and its applications, Nonlinear Dynam. 29 (2002), 281-296. Zbl1041.93022
  36. [36] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993. 
  37. [37] K. Yosida, Functional Analysis, 6th edn. Springer-Verlag, Berlin, 1980. 
  38. [38] C. Yu and G. Gao, Existence of fractional differential equations, J. Math. Anal. Appl. 310 (2005), 26-29. Zbl1088.34501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.