Initial value problems for fractional functional differential inclusions with Hadamard type derivative

Nassim Guerraiche; Samira Hamani; Johnny Henderson

Archivum Mathematicum (2016)

  • Volume: 052, Issue: 4, page 263-273
  • ISSN: 0044-8753

Abstract

top
We establish sufficient conditions for the existence of solutions of a class of fractional functional differential inclusions involving the Hadamard fractional derivative with order α ( 0 , 1 ] . Both cases of convex and nonconvex valued right hand side are considered.

How to cite

top

Guerraiche, Nassim, Hamani, Samira, and Henderson, Johnny. "Initial value problems for fractional functional differential inclusions with Hadamard type derivative." Archivum Mathematicum 052.4 (2016): 263-273. <http://eudml.org/doc/287580>.

@article{Guerraiche2016,
abstract = {We establish sufficient conditions for the existence of solutions of a class of fractional functional differential inclusions involving the Hadamard fractional derivative with order $\alpha \in (0,1]$. Both cases of convex and nonconvex valued right hand side are considered.},
author = {Guerraiche, Nassim, Hamani, Samira, Henderson, Johnny},
journal = {Archivum Mathematicum},
keywords = {fractional differential inclusion; Hadamard-type fractional derivative; fractional integral; fixed point; convex},
language = {eng},
number = {4},
pages = {263-273},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Initial value problems for fractional functional differential inclusions with Hadamard type derivative},
url = {http://eudml.org/doc/287580},
volume = {052},
year = {2016},
}

TY - JOUR
AU - Guerraiche, Nassim
AU - Hamani, Samira
AU - Henderson, Johnny
TI - Initial value problems for fractional functional differential inclusions with Hadamard type derivative
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 4
SP - 263
EP - 273
AB - We establish sufficient conditions for the existence of solutions of a class of fractional functional differential inclusions involving the Hadamard fractional derivative with order $\alpha \in (0,1]$. Both cases of convex and nonconvex valued right hand side are considered.
LA - eng
KW - fractional differential inclusion; Hadamard-type fractional derivative; fractional integral; fixed point; convex
UR - http://eudml.org/doc/287580
ER -

References

top
  1. Agarwal, R.P, Benchohra, M., Hamani, S., 10.1007/s10440-008-9356-6, Acta Appl. Math. 109 (3) (2010), 973–1033. (2010) MR2596185DOI10.1007/s10440-008-9356-6
  2. Ahmed, B., Ntouyas, S.K., Initial value problems for hybrid Hadamard fractional equations, EJDE 2014 (161) (2014), 1–8. (2014) MR3239404
  3. Aubin, J.P., Cellina, A., Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984. (1984) Zbl0538.34007MR0755330
  4. Aubin, J.P., Frankowska, H., Set-Valued Analysis, Birkhäuser, Boston, 1990. (1990) Zbl0713.49021MR1048347
  5. Benchohra, M., Djebali, S., Hamani, S., 10.1007/s11072-011-0137-1, Nonlinear Oscillation 14 (1) (2011), 7–20. (2011) MR2976264DOI10.1007/s11072-011-0137-1
  6. Benchohra, M., Hamani, S., 10.7151/dmdico.1099, Diss. Math. Diff. Inclusions. Control and Optimization 28 (2008), 147–164. (2008) Zbl1181.26012MR2548782DOI10.7151/dmdico.1099
  7. Benchohra, M., Hamani, S., Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative, Topol. Meth. Nonlinear Anal. 32 (1) (2008), 115–130. (2008) Zbl1180.26002MR2466806
  8. Bressan, A., Colombo, G., 10.4064/sm-90-1-69-86, Studia Math. 90 (1988), 69–86. (1988) Zbl0677.54013MR0947921DOI10.4064/sm-90-1-69-86
  9. Burton, T.A., Kirk, C., 10.1002/mana.19981890103, Math. Nachr. 189 (1998), 23–31. (1998) Zbl0896.47042MR1492921DOI10.1002/mana.19981890103
  10. Butzer, P.L., Kilbas, A.A., Trujillo, J.J., 10.1016/S0022-247X(02)00049-5, J. Math. Anal. Appl. 269 (2002), 387–400. (2002) MR1907120DOI10.1016/S0022-247X(02)00049-5
  11. Butzer, P.L., Kilbas, A.A., Trujillo, J.J., 10.1016/S0022-247X(02)00001-X, J. Math. Anal. Appl. 269 (2002), 1–27. (2002) Zbl0995.26007MR1907871DOI10.1016/S0022-247X(02)00001-X
  12. Butzer, P.L., Kilbas, A.A., Trujillo, J.J., 10.1016/S0022-247X(02)00066-5, J. Math. Anal. Appl. 270 (2002), 1–15. (2002) Zbl1022.26011MR1911748DOI10.1016/S0022-247X(02)00066-5
  13. Castaing, C., Valadier, M., 10.1007/BFb0087688, Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. (1977) Zbl0346.46038MR0467310DOI10.1007/BFb0087688
  14. Covitz, H., Nadler, Jr., S.B., 10.1007/BF02771543, Israel J. Math. 8 (1970), 5–11. (1970) MR0263062DOI10.1007/BF02771543
  15. Deimling, K., Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992. (1992) Zbl0820.34009MR1189795
  16. Delbosco, D., Rodino, L., 10.1006/jmaa.1996.0456, J. Math. Anal. Appl. 204 (1996), 609–625. (1996) Zbl0881.34005MR1421467DOI10.1006/jmaa.1996.0456
  17. Diethelm, K., Ford, N.J., 10.1006/jmaa.2000.7194, J. Math. Anal. Appl. 265 (2002), 229–248. (2002) Zbl1014.34003MR1876137DOI10.1006/jmaa.2000.7194
  18. Fryszkowski, A., 10.4064/sm-76-2-163-174, Studia Math. 76 (1983), 163–174. (1983) MR0730018DOI10.4064/sm-76-2-163-174
  19. Fryszkowski, A., Fixed Point Theory for Decomposable Sets. Topological Fixed Point Theory and Its Applications, vol. 2, Kluwer Academic Publishers, Dordrecht, 2004. (2004) MR2084131
  20. Hadamard, J., Essai sur l’etude des fonctions donnees par leur development de Taylor, J. Math. Pure Appl. 8 (1892), 101–186. (1892) 
  21. Hamani, S., Benchohra, M., Graef, J.R., Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions, EJDE 2010 No. 20 (2010), 1–16. (2010) Zbl1185.26010MR2592005
  22. Heymans, N., Podlubny, I., 10.1007/s00397-005-0043-5, Rheologica Acta 45 (5) (2006), 765–772. (2006) MR1658022DOI10.1007/s00397-005-0043-5
  23. Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. (2000) Zbl0998.26002MR1890104
  24. Kaufmann, E.R., Mboumi, E., Positive solutions of a boundary value problem for a nonlinear fractional differential equation, EJQTDE 2007 (3) (2007), 11pp. (2007) MR2369417
  25. Kilbas, A.A., Marzan, S.A., 10.1007/s10625-005-0137-y, Differential Equ. 41 (2005), 84–89. (2005) Zbl1160.34301MR2213269DOI10.1007/s10625-005-0137-y
  26. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
  27. Miller, K.S., Ross, B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. (1993) MR1219954
  28. Momani, S.M., Hadid, S.B., Alawenh, Z.M., 10.1155/S0161171204302231, Int. J. Math. Math. Sci. 2004 (2004), 697–701. (2004) Zbl1069.34002MR2054178DOI10.1155/S0161171204302231
  29. Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. (1999) Zbl0924.34008MR1658022
  30. Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calculus Appl. Anal. 5 (2002), 367–386. (2002) Zbl1042.26003MR1967839
  31. Thiramanus, P., Ntouyas, S.K., Tariboon, J., Existence and uniqueness results for Hadamard-type fractional differential equations with nonlocal fractional integral boundary conditions, Abstr. Appl. Anal. (2014), Art ID 902054, 9 pp. (2014) MR3228094
  32. Zhang, S., Positive solutions for boundary-value problems of nonlinear fractional differential equations, EJDE (2006), no. 36, 1–12. (2006) Zbl1096.34016MR2213580

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.