Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems

Pedro Merino; Ira Neitzel; Fredi Tröltzsch

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2010)

  • Volume: 30, Issue: 2, page 221-236
  • ISSN: 1509-9407

Abstract

top
In this paper we derive a priori error estimates for linear-quadratic elliptic optimal control problems with finite dimensional control space and state constraints in the whole domain, which can be written as semi-infinite optimization problems. Numerical experiments are conducted to ilustrate our theory.

How to cite

top

Pedro Merino, Ira Neitzel, and Fredi Tröltzsch. "Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 30.2 (2010): 221-236. <http://eudml.org/doc/271164>.

@article{PedroMerino2010,
abstract = {In this paper we derive a priori error estimates for linear-quadratic elliptic optimal control problems with finite dimensional control space and state constraints in the whole domain, which can be written as semi-infinite optimization problems. Numerical experiments are conducted to ilustrate our theory.},
author = {Pedro Merino, Ira Neitzel, Fredi Tröltzsch},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {elliptic optimal control problem; state constraints; error estimates; finite element discretization},
language = {eng},
number = {2},
pages = {221-236},
title = {Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems},
url = {http://eudml.org/doc/271164},
volume = {30},
year = {2010},
}

TY - JOUR
AU - Pedro Merino
AU - Ira Neitzel
AU - Fredi Tröltzsch
TI - Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2010
VL - 30
IS - 2
SP - 221
EP - 236
AB - In this paper we derive a priori error estimates for linear-quadratic elliptic optimal control problems with finite dimensional control space and state constraints in the whole domain, which can be written as semi-infinite optimization problems. Numerical experiments are conducted to ilustrate our theory.
LA - eng
KW - elliptic optimal control problem; state constraints; error estimates; finite element discretization
UR - http://eudml.org/doc/271164
ER -

References

top
  1. [1] N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl. 23 (2002), 201-229. doi: 10.1023/A:1020576801966 Zbl1033.65044
  2. [2] F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems (Springer, New York, 2000). Zbl0966.49001
  3. [3] E. Casas, Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems, Advances in Computational Mathematics 26 (2007), 137-153. doi: 10.1007/s10444-004-4142-0 Zbl1118.65069
  4. [4] E. Casas and M. Mateos, Error estimates for the numerical approximation of Neumann control problems, Comput. Optim. Appl. 39 (2008), 265-295. doi: 10.1007/s10589-007-9056-6 Zbl1191.49030
  5. [5] P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978). Zbl0383.65058
  6. [6] K. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state constrained elliptic control problem, SIAM J. Numer. Anal. 45 (2007), 1937-1953. Zbl1154.65055
  7. [7] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, 3rd edition, 1998). Zbl1042.35002
  8. [8] P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston, 1985). Zbl0695.35060
  9. [9] G. Gramlich, R. Hettich and E.W. Sachs, Local convergence of SQP methods in semi-infinite programming, SIAM J. Optim. 5 (1995), 641-658. Zbl0840.65056
  10. [10] M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case, J. Comput. Optim. Appl. 30 (2005), 45-63. doi: 10.1137/060652361 Zbl1074.65069
  11. [11] M. Huth and R. Tichatschke, A hybrid method for semi-infinite programming problems, Operations research, Proc. 14th Symp. Ulm/FRG 1989, Methods Oper. Res. 62 (1990), 79-90. 
  12. [12] P. Merino, F. Tröltzsch and B. Vexler, Error Estimates for the Finite Element Approximation of a Semilinear Elliptic Control Problem with State Constraints and Finite Dimensional Control Space, ESAIM:M2AN 44 (1) (2010), 167-188. Zbl1191.65076
  13. [13] C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints, Control Cybern. 37 (2008), 51-85. Zbl1170.65055
  14. [14] C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control and Optimization 43 (2004), 970-985. Zbl1071.49023
  15. [15] C. Meyer, U. Prüfert and F. Tröltzsch, On two numerical methods for state-constrained elliptic control problems, Optimization Methods and Software 22 (6) (2007), 871-899. Zbl1172.49022
  16. [16] R. Rannacher and B. Vexler, A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements, SIAM Control Optim. 44 (2005), 1844-1863. Zbl1113.65102
  17. [17] R. Reemtsen and J.-J. Rückmann (Eds), Semi-Infinite Programming (Kluwer Academic Publishers, Boston, 1998). doi: 10.1007/978-1-4757-2868-2 
  18. [18] A. R{ösch, Error estimates for linear-quadratic control problems with control constraints, Optimization Methods and Software 21 (1) (2006), 121-134. doi: 10.1080/10556780500094945 Zbl1085.49042
  19. [19] G. Still, Discretization in semi-infinite programming: the rate of convergence, Mathematical Programming. A Publication of the Mathematical Programming Society 91 (1) (A) (2001), 53-69. Zbl1051.90023
  20. [20] G. Still, Generalized semi-infinite programming: Numerical aspects, Optimization 49 (3) (2001), 223-242. Zbl1039.90083
  21. [21] F. Guerra Vázquez, J.-J. Rückmann, O. Stein and G. Still, Generalized semi-infinite programming: a tutorial, J. Comput. Appl. Math. 217 (2008), 394-419. doi: 10.1016/j.cam.2007.02.012 Zbl1190.90248

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.