Worm Colorings
Wayne Goddard; Kirsti Wash; Honghai Xu
Discussiones Mathematicae Graph Theory (2015)
- Volume: 35, Issue: 3, page 571-584
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topWayne Goddard, Kirsti Wash, and Honghai Xu. "Worm Colorings." Discussiones Mathematicae Graph Theory 35.3 (2015): 571-584. <http://eudml.org/doc/271211>.
@article{WayneGoddard2015,
abstract = {Given a coloring of the vertices, we say subgraph H is monochromatic if every vertex of H is assigned the same color, and rainbow if no pair of vertices of H are assigned the same color. Given a graph G and a graph F, we define an F-WORM coloring of G as a coloring of the vertices of G without a rainbow or monochromatic subgraph H isomorphic to F. We present some results on this concept especially as regards to the existence, complexity, and optimization within certain graph classes. The focus is on the case that F is the path on three vertices.},
author = {Wayne Goddard, Kirsti Wash, Honghai Xu},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {coloring; rainbow; monochromatic; forbidden; path.; path},
language = {eng},
number = {3},
pages = {571-584},
title = {Worm Colorings},
url = {http://eudml.org/doc/271211},
volume = {35},
year = {2015},
}
TY - JOUR
AU - Wayne Goddard
AU - Kirsti Wash
AU - Honghai Xu
TI - Worm Colorings
JO - Discussiones Mathematicae Graph Theory
PY - 2015
VL - 35
IS - 3
SP - 571
EP - 584
AB - Given a coloring of the vertices, we say subgraph H is monochromatic if every vertex of H is assigned the same color, and rainbow if no pair of vertices of H are assigned the same color. Given a graph G and a graph F, we define an F-WORM coloring of G as a coloring of the vertices of G without a rainbow or monochromatic subgraph H isomorphic to F. We present some results on this concept especially as regards to the existence, complexity, and optimization within certain graph classes. The focus is on the case that F is the path on three vertices.
LA - eng
KW - coloring; rainbow; monochromatic; forbidden; path.; path
UR - http://eudml.org/doc/271211
ER -
References
top- [1] M. Axenovich and P. Iverson, Edge-colorings avoiding rainbow and monochromatic subgraphs, Discrete Math. 308 (2008) 4710-4723. doi:10.1016/j.disc.2007.08.092[Crossref][WoS] Zbl1235.05092
- [2] M. Axenovich, T. Jiang and A. Kündgen, Bipartite anti-Ramsey numbers of cycles, J. Graph Theory 47 (2004) 9-28. doi:10.1002/jgt.20012[Crossref] Zbl1062.05095
- [3] Cs. Bujtás, E. Sampathkumar, Zs. Tuza, C. Dominic and L. Pushpalatha, Vertex coloring without large polychromatic stars, Discrete Math. 312 (2012) 2102-2108. doi:10.1016/j.disc.2011.04.013[WoS][Crossref] Zbl1244.05088
- [4] Cs. Bujtás, E. Sampathkumar, Zs. Tuza, M.S. Subramanya and C. Dominic, 3- consecutive C-colorings of graphs, Discuss. Math. Graph Theory 30 (2010) 393-405. doi:10.7151/dmgt.1502[Crossref] Zbl1217.05087
- [5] R. Cowen, Some connections between set theory and computer science, Lecture Notes in Comput. Sci. 713 (1993) 14-22. doi:10.1007/BFb0022548[Crossref] Zbl0794.03072
- [6] W. Goddard, K. Wash and H. Xu, WORM colorings forbidding cycles or cliques, Congr. Numer. 219 (2014) 161-173. Zbl1312.05050
- [7] S.M. Hedetniemi, A. Proskurowski and M.M. Sys lo, Interior graphs of maximal outerplane graphs, J. Combin. Theory Ser.B 38 (1985) 156-167. doi:10.1016/0095-8956(85)90081-4[Crossref]
- [8] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar. 1 (1966) 237-238. Zbl0151.33401
- [9] J.A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on par- tial k-trees, SIAM J. Discrete Math. 10 (1997) 529-550. doi:10.1137/S0895480194275825[Crossref] Zbl0885.68118
- [10] Zs. Tuza, Graph colorings with local constraints-a survey, Discuss. Math. Graph Theory 17 (1997) 161-228. doi:10.7151/dmgt.1049 [Crossref] Zbl0923.05027
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.