Homogeneous colourings of graphs
Mathematica Bohemica (2023)
- Volume: 148, Issue: 1, page 105-115
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMadaras, Tomáš, and Šurimová, Mária. "Homogeneous colourings of graphs." Mathematica Bohemica 148.1 (2023): 105-115. <http://eudml.org/doc/299466>.
@article{Madaras2023,
abstract = {A proper vertex $k$-colouring of a graph $G$ is called $l$-homogeneous if the number of colours in the neigbourhood of each vertex of $G$ equals $l$. We explore basic properties (the existence and the number of used colours) of homogeneous colourings of graphs in general as well as of some specific graph families, in particular planar graphs.},
author = {Madaras, Tomáš, Šurimová, Mária},
journal = {Mathematica Bohemica},
keywords = {proper colouring; homogeneous colouring; planar graph; triangulation},
language = {eng},
number = {1},
pages = {105-115},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homogeneous colourings of graphs},
url = {http://eudml.org/doc/299466},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Madaras, Tomáš
AU - Šurimová, Mária
TI - Homogeneous colourings of graphs
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 1
SP - 105
EP - 115
AB - A proper vertex $k$-colouring of a graph $G$ is called $l$-homogeneous if the number of colours in the neigbourhood of each vertex of $G$ equals $l$. We explore basic properties (the existence and the number of used colours) of homogeneous colourings of graphs in general as well as of some specific graph families, in particular planar graphs.
LA - eng
KW - proper colouring; homogeneous colouring; planar graph; triangulation
UR - http://eudml.org/doc/299466
ER -
References
top- Bala, K., Homogénne farbenia grafov: BSc. Thesis, P. J. Šafárik University in Košice, Košice (2016), Slovak. (2016)
- Behzad, M., Chartrand, G., 10.2307/2315277, Am. Math. Mon. 74 (1967), 962-963. (1967) Zbl0179.52701MR0220627DOI10.2307/2315277
- Bujtás, C., Tuza, Z., 10.1016/j.disc.2008.04.019, Discrete Math. 309 (2009), 4890-4902. (2009) Zbl1210.05088MR2533435DOI10.1016/j.disc.2008.04.019
- Diks, K., Kowalik, L., Kurowski, M., 10.1007/3-540-36379-3_13, Graph-Theoretic Concepts in Computer Science Lecture Notes in Computer Science 2573. Springer, Berlin (2002), 138-149. (2002) Zbl1022.05500MR2063806DOI10.1007/3-540-36379-3_13
- Dobrynin, A. A., Gutman, I., Klavžar, S., Žigert, P., 10.1023/A:1016290123303, Acta Appl. Math. 72 (2002), 247-294. (2002) Zbl0993.05059MR1916949DOI10.1023/A:1016290123303
- Everett, M. G., Borgatti, S., 10.1016/0165-4896(91)90080-B, Math. Soc. Sci. 21 (1991), 183-188. (1991) Zbl0771.05037MR1113826DOI10.1016/0165-4896(91)90080-B
- Feder, T., Hell, P., Subi, C., 10.1016/j.ejc.2020.103210, Eur. J. Comb. 91 (2021), Article ID 103210, 15 pages. (2021) Zbl1458.05065MR4161804DOI10.1016/j.ejc.2020.103210
- Goddard, W., Wash, K., Xu, H., 10.7151/dmgt.1814, Discuss. Math. Graph Theory 35 (2015), 571-584. (2015) Zbl1317.05055MR3368990DOI10.7151/dmgt.1814
- Janicová, M., Madaras, T., Soták, R., Lužar, B., 10.26493/1855-3974.1083.54f, Ars Math. Contemp. 12 (2017), 351-360. (2017) Zbl1370.05065MR3646700DOI10.26493/1855-3974.1083.54f
- Jendrol', S., Maceková, M., 10.1016/j.disc.2014.09.014, Discrete Math. 338 (2015), 149-158. (2015) Zbl1302.05040MR3279266DOI10.1016/j.disc.2014.09.014
- Kramer, F., Kramer, H., 10.1016/j.disc.2006.11.059, Discrete Math. 308 (2008), 422-426. (2008) Zbl1130.05026MR2378044DOI10.1016/j.disc.2006.11.059
- Montgomery, B., Dynamic Coloring of Graphs: Ph.D. Thesis, West Virginia University, Morgantown (2001). (2001) MR2702379
- Roberts, F. S., Sheng, L., 10.1002/1097-0037(200103)37:2<67::AID-NET1>3.0.CO;2-9, Networks 37 (2001), 67-73. (2001) Zbl0991.91063MR1811997DOI10.1002/1097-0037(200103)37:2<67::AID-NET1>3.0.CO;2-9
- Tuza, Z., 10.26493/2590-9770.1234.37b, Art Discrete Appl. Math. 1 (2018), Article ID P2.05, 11 pages. (2018) Zbl1421.05068MR3997091DOI10.26493/2590-9770.1234.37b
- West, D. B., Introduction to Graph Theory, Prentice Hall, Upper Saddle River (1996). (1996) Zbl1121.05304MR1367739
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.