# Reconstructing Surface Triangulations by Their Intersection Matrices 26 September 2014

Jorge L. Arocha; Javier Bracho; Natalia García-Colín; Isabel Hubard

Discussiones Mathematicae Graph Theory (2015)

- Volume: 35, Issue: 3, page 483-491
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topJorge L. Arocha, et al. "Reconstructing Surface Triangulations by Their Intersection Matrices 26 September 2014." Discussiones Mathematicae Graph Theory 35.3 (2015): 483-491. <http://eudml.org/doc/271230>.

@article{JorgeL2015,

abstract = {The intersection matrix of a simplicial complex has entries equal to the rank of the intersecction of its facets. We prove that this matrix is enough to define up to isomorphism a triangulation of a surface.},

author = {Jorge L. Arocha, Javier Bracho, Natalia García-Colín, Isabel Hubard},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {triangulated surface; isomorphism; intersection matrix},

language = {eng},

number = {3},

pages = {483-491},

title = {Reconstructing Surface Triangulations by Their Intersection Matrices 26 September 2014},

url = {http://eudml.org/doc/271230},

volume = {35},

year = {2015},

}

TY - JOUR

AU - Jorge L. Arocha

AU - Javier Bracho

AU - Natalia García-Colín

AU - Isabel Hubard

TI - Reconstructing Surface Triangulations by Their Intersection Matrices 26 September 2014

JO - Discussiones Mathematicae Graph Theory

PY - 2015

VL - 35

IS - 3

SP - 483

EP - 491

AB - The intersection matrix of a simplicial complex has entries equal to the rank of the intersecction of its facets. We prove that this matrix is enough to define up to isomorphism a triangulation of a surface.

LA - eng

KW - triangulated surface; isomorphism; intersection matrix

UR - http://eudml.org/doc/271230

ER -

## References

top- [1] R. Blind and P. Mani-Levitska, Puzzles and polytope isomorphisms, Aequationes Math. 34 (1987) 287-297. doi:10.1007/BF01830678[Crossref] Zbl0634.52005
- [2] G. Kalai, A simple way to tell a simple polytope from its graph, J. Combin. Theory Ser. A 49 (1988) 381-383. doi:10.1016/0097-3165(88)90064-7[Crossref] Zbl0673.05087
- [3] B. Mohar and A. Vodopivec, On polyhedral embeddings of cubic graphs, Combin. Probab. Comput. 15 (2006) 877-893. doi:10.1017/S0963548306007607[Crossref] Zbl1108.05033
- [4] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, Springer, (1995). doi:10.1007/978-1-4613-8431-1[Crossref]

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.