Reconstructing Surface Triangulations by Their Intersection Matrices 26 September 2014
Jorge L. Arocha; Javier Bracho; Natalia García-Colín; Isabel Hubard
Discussiones Mathematicae Graph Theory (2015)
- Volume: 35, Issue: 3, page 483-491
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topJorge L. Arocha, et al. "Reconstructing Surface Triangulations by Their Intersection Matrices 26 September 2014." Discussiones Mathematicae Graph Theory 35.3 (2015): 483-491. <http://eudml.org/doc/271230>.
@article{JorgeL2015,
abstract = {The intersection matrix of a simplicial complex has entries equal to the rank of the intersecction of its facets. We prove that this matrix is enough to define up to isomorphism a triangulation of a surface.},
author = {Jorge L. Arocha, Javier Bracho, Natalia García-Colín, Isabel Hubard},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {triangulated surface; isomorphism; intersection matrix},
language = {eng},
number = {3},
pages = {483-491},
title = {Reconstructing Surface Triangulations by Their Intersection Matrices 26 September 2014},
url = {http://eudml.org/doc/271230},
volume = {35},
year = {2015},
}
TY - JOUR
AU - Jorge L. Arocha
AU - Javier Bracho
AU - Natalia García-Colín
AU - Isabel Hubard
TI - Reconstructing Surface Triangulations by Their Intersection Matrices 26 September 2014
JO - Discussiones Mathematicae Graph Theory
PY - 2015
VL - 35
IS - 3
SP - 483
EP - 491
AB - The intersection matrix of a simplicial complex has entries equal to the rank of the intersecction of its facets. We prove that this matrix is enough to define up to isomorphism a triangulation of a surface.
LA - eng
KW - triangulated surface; isomorphism; intersection matrix
UR - http://eudml.org/doc/271230
ER -
References
top- [1] R. Blind and P. Mani-Levitska, Puzzles and polytope isomorphisms, Aequationes Math. 34 (1987) 287-297. doi:10.1007/BF01830678[Crossref] Zbl0634.52005
- [2] G. Kalai, A simple way to tell a simple polytope from its graph, J. Combin. Theory Ser. A 49 (1988) 381-383. doi:10.1016/0097-3165(88)90064-7[Crossref] Zbl0673.05087
- [3] B. Mohar and A. Vodopivec, On polyhedral embeddings of cubic graphs, Combin. Probab. Comput. 15 (2006) 877-893. doi:10.1017/S0963548306007607[Crossref] Zbl1108.05033
- [4] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, Springer, (1995). doi:10.1007/978-1-4613-8431-1[Crossref]
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.