# Strong ƒ-Star Factors of Graphs

Discussiones Mathematicae Graph Theory (2015)

- Volume: 35, Issue: 3, page 475-482
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topZheng Yan. "Strong ƒ-Star Factors of Graphs." Discussiones Mathematicae Graph Theory 35.3 (2015): 475-482. <http://eudml.org/doc/271238>.

@article{ZhengYan2015,

abstract = {Let G be a graph and f : V (G) → \{2, 3, . . .\}. A spanning subgraph F is called strong f-star of G if each component of F is a star whose center x satisfies degF (x) ≤ ƒ(x) and F is an induced subgraph of G. In this paper, we prove that G has a strong f-star factor if and only if oddca(G − S) ≤ ∑x∊S ƒ(x) for all S ⊂ V (G), where oddca(G) denotes the number of odd complete-cacti of G.},

author = {Zheng Yan},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {ƒ-star factor; strong ƒ-star factor; complete-cactus; factor of graph.; -star factor; strong -star factor; factor of graph},

language = {eng},

number = {3},

pages = {475-482},

title = {Strong ƒ-Star Factors of Graphs},

url = {http://eudml.org/doc/271238},

volume = {35},

year = {2015},

}

TY - JOUR

AU - Zheng Yan

TI - Strong ƒ-Star Factors of Graphs

JO - Discussiones Mathematicae Graph Theory

PY - 2015

VL - 35

IS - 3

SP - 475

EP - 482

AB - Let G be a graph and f : V (G) → {2, 3, . . .}. A spanning subgraph F is called strong f-star of G if each component of F is a star whose center x satisfies degF (x) ≤ ƒ(x) and F is an induced subgraph of G. In this paper, we prove that G has a strong f-star factor if and only if oddca(G − S) ≤ ∑x∊S ƒ(x) for all S ⊂ V (G), where oddca(G) denotes the number of odd complete-cacti of G.

LA - eng

KW - ƒ-star factor; strong ƒ-star factor; complete-cactus; factor of graph.; -star factor; strong -star factor; factor of graph

UR - http://eudml.org/doc/271238

ER -

## References

top- [1] J. Akiyama and M. Kano, Factors and Factorizations of Graphs (Lecture Note in Math. 2031 Springer- Verlag Berlin Heidelberg, 2011). doi:10.1007/978-3-642-21919-1[Crossref] Zbl1229.05001
- [2] A. Amahashi and M. Kano, On factors with given components, Discrete Math. 42 (1982) 1-6. doi:10.1016/0012-365X(82)90048-6[Crossref] Zbl0525.05048
- [3] C. Berge and M. Las Vergnas, On the existence of subgraphs with degree constraints, Indag. Math. Proc. 81 (1978) 165-176. doi:10.1016/S1385-7258(78)80007-9[Crossref]
- [4] Y. Egawa, M. Kano and A.K. Kelmans, Star partitions of graphs, J. Graph Theory 25 (1997) 185-190. doi:10.1002/(SICI)1097-0118(199707)25:3h185::AID-JGT2i3.0.CO;2-H[Crossref] Zbl0877.05045
- [5] J. Folkman and D.R. Fulkerson, Flows in infinite graphs, J. Combin. Theory 8 (1970) 30-44. doi:10.1016/S0021-9800(70)80006-0[Crossref] Zbl0185.27904
- [6] M. Las Vergnas, An extension of Tutte’s 1-factor theorem, Discrete Math. 23 (1978) 241-255. doi:10.1016/0012-365X(78)90006-7[Crossref]
- [7] A.K. Kelmans, Optimal packing of induced stars in a graph, RUTCOR Research Report 26-94, Rutgers University (1994) 1-25.
- [8] A. Saito and M. Watanabe, Partitioning graphs into induced stars, Ars Combin. 36 (1993) 3-6. Zbl0794.05107

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.