On general Franklin systems

Gevorkyan Gegham; Kamont Anna

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1998

Abstract

top
AbstractWe study general Franklin systems, i.e. systems of orthonormal piecewise linear functions corresponding to quasi-dyadic sequences of partitions of [0,1]. The following problems are treated: unconditionality of the general Franklin basis in L p , 1 < p < ∞, and H p , 1/2 < p ≤ 1; equivalent conditions for the unconditional convergence of the Franklin series in L p for 0< p ≤ 1; relation between Haar and Franklin series with identical coefficients; characterization of the spaces BMO and Lip(α), 0 < α < 1, in terms of the Fourier-Franklin coefficients.CONTENTS1. Introduction.....................................................................................5 1.1. Notation......................................................................................72. Definition and properties of general Franklin systems..................10 2.1. Piecewise linear functions.........................................................10 2.2. Franklin functions.....................................................................11 2.3. Sequences of partitions and Franklin functions........................13  2.3.1. Regularity of sequences of partitions...................................14 2.4. Sequences of partitions and general Haar systems.................16 2.5. Technical lemmas.....................................................................173. Franklin series in L p , 1 < p < ∞...............................................214. Franklin series in L p , 0 < p ≤ 1, and H p , 1/2 < p ≤ 1..........275. The necessity of strong regularity in H p , 1/2 < p ≤ 1...............426. Haar and Franklin series with identical coefficients......................467. Characterization of the spaces BMO and Lip(α), 0 < α < 1...........51References.......................................................................................581991 Mathematics Subject Classification: Primary 42C10.

How to cite

top

Gevorkyan Gegham, and Kamont Anna. On general Franklin systems. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1998. <http://eudml.org/doc/271242>.

@book{GevorkyanGegham1998,
abstract = {AbstractWe study general Franklin systems, i.e. systems of orthonormal piecewise linear functions corresponding to quasi-dyadic sequences of partitions of [0,1]. The following problems are treated: unconditionality of the general Franklin basis in $L^p$, 1 < p < ∞, and $H^p$, 1/2 < p ≤ 1; equivalent conditions for the unconditional convergence of the Franklin series in $L^p$ for 0< p ≤ 1; relation between Haar and Franklin series with identical coefficients; characterization of the spaces BMO and Lip(α), 0 < α < 1, in terms of the Fourier-Franklin coefficients.CONTENTS1. Introduction.....................................................................................5 1.1. Notation......................................................................................72. Definition and properties of general Franklin systems..................10 2.1. Piecewise linear functions.........................................................10 2.2. Franklin functions.....................................................................11 2.3. Sequences of partitions and Franklin functions........................13  2.3.1. Regularity of sequences of partitions...................................14 2.4. Sequences of partitions and general Haar systems.................16 2.5. Technical lemmas.....................................................................173. Franklin series in $L^p$, 1 < p < ∞...............................................214. Franklin series in $L^p$, 0 < p ≤ 1, and $H^p$, 1/2 < p ≤ 1..........275. The necessity of strong regularity in $H^p$, 1/2 < p ≤ 1...............426. Haar and Franklin series with identical coefficients......................467. Characterization of the spaces BMO and Lip(α), 0 < α < 1...........51References.......................................................................................581991 Mathematics Subject Classification: Primary 42C10.},
author = {Gevorkyan Gegham, Kamont Anna},
keywords = {Franklin system; unconditional basis; unconditional convergence; $L^p$ spaces; real Hardy spaces; Hölder classes; BMO space; dyadic Hardy spaces; BMO; Franklin-Fourier coefficients},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {On general Franklin systems},
url = {http://eudml.org/doc/271242},
year = {1998},
}

TY - BOOK
AU - Gevorkyan Gegham
AU - Kamont Anna
TI - On general Franklin systems
PY - 1998
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - AbstractWe study general Franklin systems, i.e. systems of orthonormal piecewise linear functions corresponding to quasi-dyadic sequences of partitions of [0,1]. The following problems are treated: unconditionality of the general Franklin basis in $L^p$, 1 < p < ∞, and $H^p$, 1/2 < p ≤ 1; equivalent conditions for the unconditional convergence of the Franklin series in $L^p$ for 0< p ≤ 1; relation between Haar and Franklin series with identical coefficients; characterization of the spaces BMO and Lip(α), 0 < α < 1, in terms of the Fourier-Franklin coefficients.CONTENTS1. Introduction.....................................................................................5 1.1. Notation......................................................................................72. Definition and properties of general Franklin systems..................10 2.1. Piecewise linear functions.........................................................10 2.2. Franklin functions.....................................................................11 2.3. Sequences of partitions and Franklin functions........................13  2.3.1. Regularity of sequences of partitions...................................14 2.4. Sequences of partitions and general Haar systems.................16 2.5. Technical lemmas.....................................................................173. Franklin series in $L^p$, 1 < p < ∞...............................................214. Franklin series in $L^p$, 0 < p ≤ 1, and $H^p$, 1/2 < p ≤ 1..........275. The necessity of strong regularity in $H^p$, 1/2 < p ≤ 1...............426. Haar and Franklin series with identical coefficients......................467. Characterization of the spaces BMO and Lip(α), 0 < α < 1...........51References.......................................................................................581991 Mathematics Subject Classification: Primary 42C10.
LA - eng
KW - Franklin system; unconditional basis; unconditional convergence; $L^p$ spaces; real Hardy spaces; Hölder classes; BMO space; dyadic Hardy spaces; BMO; Franklin-Fourier coefficients
UR - http://eudml.org/doc/271242
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.