Duality in set-valued optimization

Song Wen

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1998

Abstract

top
CONTENTSIntroduction...........................................................................................................51. Preliminaries on convex and set-valued analysis..............................................6 1.1. Convexity of sets...........................................................................................6 1.2. Convexity of set-valued mappings.................................................................9 1.3. Closed convex processes and invex set-valued mappings..........................122. Vector optimization problems...........................................................................14 2.1. Characterization for optimal points of a set..................................................14 2.2. Characterization for optimal solutions of an optimization problem................173. Lagrangian multiplier rule................................................................................19 3.1. Lagrangian conditions for weak optimality...................................................19 3.2. Lagrangian conditions for optimality.............................................................21 3.3. Lagrangian conditions for invex set-valued mappings.................................284. Lagrangian duality...........................................................................................33 4.1. Duality for weak optimality............................................................................34 4.2. Duality for optimality.....................................................................................35 4.3. Duality for invex set-valued mappings..........................................................365. Geometric duality.............................................................................................37 5.1. A general duality principle for sets...............................................................37 5.2. A geometric approach to duality...................................................................39 5.3. Linear optimization problems.......................................................................426. Conjugate duality.............................................................................................45 6.1. Conjugate mappings and subdifferentials....................................................45 6.2. A general conjugate duality..........................................................................50 6.3. Duality in vector optimization with constraints...............................................55 6.4. The Fenchel type duality..............................................................................59References...........................................................................................................62List of symbols......................................................................................................67Index.....................................................................................................................681991 Mathematics Subject Classification: 90C29, 90C26, 90C30.

How to cite

top

Song Wen. Duality in set-valued optimization. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1998. <http://eudml.org/doc/271246>.

@book{SongWen1998,
abstract = {CONTENTSIntroduction...........................................................................................................51. Preliminaries on convex and set-valued analysis..............................................6 1.1. Convexity of sets...........................................................................................6 1.2. Convexity of set-valued mappings.................................................................9 1.3. Closed convex processes and invex set-valued mappings..........................122. Vector optimization problems...........................................................................14 2.1. Characterization for optimal points of a set..................................................14 2.2. Characterization for optimal solutions of an optimization problem................173. Lagrangian multiplier rule................................................................................19 3.1. Lagrangian conditions for weak optimality...................................................19 3.2. Lagrangian conditions for optimality.............................................................21 3.3. Lagrangian conditions for invex set-valued mappings.................................284. Lagrangian duality...........................................................................................33 4.1. Duality for weak optimality............................................................................34 4.2. Duality for optimality.....................................................................................35 4.3. Duality for invex set-valued mappings..........................................................365. Geometric duality.............................................................................................37 5.1. A general duality principle for sets...............................................................37 5.2. A geometric approach to duality...................................................................39 5.3. Linear optimization problems.......................................................................426. Conjugate duality.............................................................................................45 6.1. Conjugate mappings and subdifferentials....................................................45 6.2. A general conjugate duality..........................................................................50 6.3. Duality in vector optimization with constraints...............................................55 6.4. The Fenchel type duality..............................................................................59References...........................................................................................................62List of symbols......................................................................................................67Index.....................................................................................................................681991 Mathematics Subject Classification: 90C29, 90C26, 90C30.},
author = {Song Wen},
keywords = {set valued map; duality; vector optimization; Lagrangean multipliers},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Duality in set-valued optimization},
url = {http://eudml.org/doc/271246},
year = {1998},
}

TY - BOOK
AU - Song Wen
TI - Duality in set-valued optimization
PY - 1998
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction...........................................................................................................51. Preliminaries on convex and set-valued analysis..............................................6 1.1. Convexity of sets...........................................................................................6 1.2. Convexity of set-valued mappings.................................................................9 1.3. Closed convex processes and invex set-valued mappings..........................122. Vector optimization problems...........................................................................14 2.1. Characterization for optimal points of a set..................................................14 2.2. Characterization for optimal solutions of an optimization problem................173. Lagrangian multiplier rule................................................................................19 3.1. Lagrangian conditions for weak optimality...................................................19 3.2. Lagrangian conditions for optimality.............................................................21 3.3. Lagrangian conditions for invex set-valued mappings.................................284. Lagrangian duality...........................................................................................33 4.1. Duality for weak optimality............................................................................34 4.2. Duality for optimality.....................................................................................35 4.3. Duality for invex set-valued mappings..........................................................365. Geometric duality.............................................................................................37 5.1. A general duality principle for sets...............................................................37 5.2. A geometric approach to duality...................................................................39 5.3. Linear optimization problems.......................................................................426. Conjugate duality.............................................................................................45 6.1. Conjugate mappings and subdifferentials....................................................45 6.2. A general conjugate duality..........................................................................50 6.3. Duality in vector optimization with constraints...............................................55 6.4. The Fenchel type duality..............................................................................59References...........................................................................................................62List of symbols......................................................................................................67Index.....................................................................................................................681991 Mathematics Subject Classification: 90C29, 90C26, 90C30.
LA - eng
KW - set valued map; duality; vector optimization; Lagrangean multipliers
UR - http://eudml.org/doc/271246
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.